TC4在动态载荷下的剪切行为研究

苏冠龙 龚煦 李玉龙 郭亚洲 索涛

苏冠龙, 龚煦, 李玉龙, 郭亚洲, 索涛. TC4在动态载荷下的剪切行为研究[J]. 爆炸与冲击, 2015, 35(4): 527-535. doi: 10.11883/1001-1455(2015)04-0527-09
引用本文: 苏冠龙, 龚煦, 李玉龙, 郭亚洲, 索涛. TC4在动态载荷下的剪切行为研究[J]. 爆炸与冲击, 2015, 35(4): 527-535. doi: 10.11883/1001-1455(2015)04-0527-09
Su Guan-long, Gong Xu, Li Yu-long, Guo Ya-zhou, Suo Tao. Shear behavior of TC4 alloy under dynamic loading[J]. Explosion And Shock Waves, 2015, 35(4): 527-535. doi: 10.11883/1001-1455(2015)04-0527-09
Citation: Su Guan-long, Gong Xu, Li Yu-long, Guo Ya-zhou, Suo Tao. Shear behavior of TC4 alloy under dynamic loading[J]. Explosion And Shock Waves, 2015, 35(4): 527-535. doi: 10.11883/1001-1455(2015)04-0527-09

TC4在动态载荷下的剪切行为研究

doi: 10.11883/1001-1455(2015)04-0527-09
基金项目: 西北工业大学研究生创业种子基金项目(Z2014001)
详细信息
    作者简介:

    苏冠龙(1989-), 男, 硕士研究生

    通讯作者:

    李玉龙, liyulong@nwpu.edu.cn

  • 中图分类号: O346

Shear behavior of TC4 alloy under dynamic loading

  • 摘要: 使用分离式霍布金森压杆(SHPB)对2种TC4(Ti-6Al-4V)试样(单边剪切试样与双边剪切试样)在应变率104 s-1下进行动态剪切加载,利用SIM D8高速照相系统捕捉了绝热剪切带扩展的整个历程,得到了TC4在拍照时刻的应力应变曲线;使用金相显微镜和SEM扫描电镜对TC4绝热剪切带的微观形貌进行观察,发现绝热剪切带宽度为5~12 μm,断口从韧窝断裂演变为解理断裂,可观测到韧窝状与河流花样断口形貌,但是并未看到相变的发生;对2种试样就产生绝热剪切带的形式与敏感性进行了分析,实验表明双边试样更易产生绝热剪切带;通过高速照相系统的标定换算,得到TC4绝热剪切带产生的临界剪切应变在78%~88%之间。在SHPB动态加载条件下,TC4绝热剪切带的扩展速度在460~1 250 m/s之间,且应变率越高,剪切带扩展越快,扩展平均速度与名义应变率近似呈线性关系;另外,在同一加载速率下,剪切带并不是匀速扩展,其扩展速度随载荷的增加而不断增加。
  • 图  1  实验与试样

    Figure  1.  Experiment setup and test samples

    图  2  平均剪应力-名义应变曲线

    Figure  2.  The average shear stress-strain curve

    图  3  剪切带扩展高速照片(TC4-B6, 时间间隔4 μs)

    Figure  3.  Ultra-high speed photographs of extending shear zone(TC4-B6, time interval: 4 μs)

    图  4  TC4-B6平均剪应力-名义应变曲线

    Figure  4.  Average shear stress-strain curve of TC4-B6

    图  5  局部剪切应变计算结果

    Figure  5.  Schematic calculation of local shear strain

    图  6  TC4-B6局部剪切应变-加载时间曲线

    Figure  6.  Local shear strain-loading time curve of TC4-B6

    图  7  绝热剪切带照片

    Figure  7.  Photograghs of adiabatic shear band

    图  8  绝热剪切断裂断口SEM照片

    Figure  8.  SEM photogragh of adiabatic shear fracture

    图  9  试样的2种破坏形式

    Figure  9.  Two different failure modles of samples

    图  10  剪切带扩展高速照相机照片(TC4-A6,时间间隔8 μs)

    Figure  10.  Ultra-high speed photographs of the shear band (TC4-A6, time interval: 8 μs)

    图  11  扩展速度对比图

    Figure  11.  Propagation speed-loading time curve

    图  12  名义应变率与剪切带扩展平均速度的关系

    Figure  12.  Average propagation speed-nominal strain rate curve

    表  1  实验结果

    Table  1.   Experimental results

    编号v/(m·s-1)εc${{\dot \varepsilon }_{\rm{s}}}$/(104)W/μm
    TC4-A-121.42.53.0-
    TC4-A-2, 3, 423.63.03.3-
    TC4-A-5, 6, 728.23.23.55~10
    TC4-A-8, 9, 1029.63.23.65~10
    TC4-B-1, 2, 322.33.04.0-
    TC4-B-4, 5, 625.53.15.08~12
    TC4-B-7, 8, 929.13.26.08~12
    TC4-B-10, 11, 1233.93.46.38~12
    下载: 导出CSV

    表  2  局部剪切应变最大值

    Table  2.   The maximum of local shear stain

    编号${\dot \varepsilon }$/(104)εp
    def
    TC4-B65.00.782.213.07
    TC4-B96.00.792.273.11
    TC4-B126.30.812.323.20
    下载: 导出CSV
  • [1] Laboulaye C, M Tiers C N D A E, De Laboulaye C P L. Annales du conservatoire des arts et métiers[M]. Gathier-Villars, 1863.
    [2] Dodd B, Bai Y. Adiabatic shear localization: Frontiers and advances[M]. Elsevier Science, 2012.
    [3] Zener C, Hollomon J. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32. doi: 10.1063/1.1707363
    [4] Peirs J, Verleysen P, Degrieck J, et al. The uses of hat-shaped specimens to study the high strain rate shear behaviour of Ti-6Al-4V[J]. International Journal of Impact Engineering, 2010, 37(6): 703-714. doi: 10.1016/j.ijimpeng.2009.08.002
    [5] Guo Y, Li Y. A novel approach to testing the dynamic shear response of Ti-6Al-4V[J]. Acta Mechanica Solida Sinica, 2012, 25(3): 299-311. doi: 10.1016/S0894-9166(12)60027-5
    [6] Timothy S, Hutchings I. Initiation and growth of microfractures along adiabatic shear bands in Ti-6AI-4V[J]. Materials Science and Technology, 1985, 1(7): 526-530. doi: 10.1179/mst.1985.1.7.526
    [7] Liao S-C, Duffy J. Adiabatic shear bands in a Ti-6Al-4V titanium alloy[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(11): 2201-2231. doi: 10.1016/S0022-5096(98)00044-1
    [8] Rittel D, Wang Z. Thermo-mechanical aspects of adiabatic shear failure of AM50 and Ti6Al4V alloys[J]. Mechanics of Materials, 2008, 40(8): 629-635. doi: 10.1016/j.mechmat.2008.03.002
    [9] Kolsky H. An investigation of the mechanical properties of materials at very high rates of loading[J]. Proceedings of the Physical Society Section B, 1949, 62(11): 676. doi: 10.1088/0370-1301/62/11/302
    [10] Baker W E, Yew C. Strain-rate effects in the propagation of torsional plastic waves[J]. Journal of Applied Mechanics, 1966, 33(4): 917-923. doi: 10.1115/1.3625202
    [11] Culver R S. Torsional-impact apparatus[J]. Experimental Mechanics, 1972, 12(9): 398-405. doi: 10.1007/BF02318550
    [12] Wright T W. The physics and mathematics of adiabatic shear bands[M]. Cambridge, UK: Cambridge University Press, 2002.
    [13] Meyer L, Staskewitsch E, Burblies A. Adiabatic shear failure under biaxial dynamic compression/shear loading[J]. Mechanics of Materials, 1994, 17(2): 203-214.
    [14] Engineers I O M. Journal of mechanical engineering science[M]. Institution of Mechanical Engineers, 1960.
    [15] Guo Y Z, Li Y L, Pan Z, et al. A numerical study of microstructure effect on adiabatic shear instability: Application to nanostructured/ultrafine grained materials[J]. Mechanics of Materials, 2010, 42(11): 1020-1029. doi: 10.1016/j.mechmat.2010.09.002
    [16] Xu Y, Zhang J, Bai Y, et al. Shear localization in dynamic deformation: microstructural evolution[J]. Metallurgical and materials transactions A, 2008, 39(4): 811-843. doi: 10.1007/s11661-007-9431-z
    [17] Marchand A, Duffy J. An experimental study of the formation process of adiabatic shear bands in a structural steel[J]. Journal of the Mechanics and Physics of Solids, 1988, 36(3): 251-283. doi: 10.1016/0022-5096(88)90012-9
    [18] Mason J J, Rosakis A J, Ravichandran G. Full field measurements of the dynamic deformation field around a growing adiabatic shear band at the tip of a dynamically loaded crack or notch[J]. Journal of the Mechanics and Physics of Solids, 1994, 42(11): 1679-1697. doi: 10.1016/0022-5096(94)90067-1
    [19] Zhou M, Rosakis A, Ravichandran G. Dynamically propagating shear bands in impact-loaded prenotched plates: Ⅰ: Experimental investigations of temperature signatures and propagation speed[J]. Journal of the Mechanics and Physics of Solids, 1996, 44(6): 981-1006. doi: 10.1016/0022-5096(96)00003-8
    [20] Zhou M, Ravichandran G, Rosakis A. Dynamically propagating shear bands in impact-loaded prenotched plates-Ⅱ. Numerical simulation[J]. Journal of the Mechanics and Physics of Solids, 1996, 44(6): 1007-1032. doi: 10.1016/0022-5096(96)00004-X
    [21] Chichili D R, Ramesh K, Hemker K J. Adiabatic shear localization in α-titanium: Experiments, modeling and microstructural evolution[J]. Journal of the Mechanics and Physics of Solids, 2004, 52(8): 1889-1909. doi: 10.1016/j.jmps.2004.02.013
    [22] Meyers M, Subhash G, Kad B, et al. Evolution of microstructure and shear-band formation in α-hcp titanium[J]. Mechanics of Materials, 1994, 17(2): 175-193. https://www.sciencedirect.com/science/article/pii/0167663694900582
    [23] Goods S, Brown L. Overview No. 1: The nucleation of cavities by plastic deformation[J]. Acta Metallurgica, 1979, 27(1): 1-15. doi: 10.1016/0001-6160(79)90051-8
    [24] Timothy S, Hutchings I. The structure of adiabatic shear bands in a titanium alloy[J]. Acta Metallurgica, 1985, 33(4): 667-676. doi: 10.1016/0001-6160(85)90030-6
    [25] Zhang J, Tan C, Ren Y, et al. Adiabatic shear fracture in Ti-6Al-4V alloy[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(11): 2396-2401. doi: 10.1016/S1003-6326(11)61026-1
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  3190
  • HTML全文浏览量:  408
  • PDF下载量:  488
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-04
  • 修回日期:  2014-06-25
  • 刊出日期:  2015-07-25

目录

    /

    返回文章
    返回