Shear behavior of TC4 alloy under dynamic loading
-
摘要: 使用分离式霍布金森压杆(SHPB)对2种TC4(Ti-6Al-4V)试样(单边剪切试样与双边剪切试样)在应变率104 s-1下进行动态剪切加载,利用SIM D8高速照相系统捕捉了绝热剪切带扩展的整个历程,得到了TC4在拍照时刻的应力应变曲线;使用金相显微镜和SEM扫描电镜对TC4绝热剪切带的微观形貌进行观察,发现绝热剪切带宽度为5~12 μm,断口从韧窝断裂演变为解理断裂,可观测到韧窝状与河流花样断口形貌,但是并未看到相变的发生;对2种试样就产生绝热剪切带的形式与敏感性进行了分析,实验表明双边试样更易产生绝热剪切带;通过高速照相系统的标定换算,得到TC4绝热剪切带产生的临界剪切应变在78%~88%之间。在SHPB动态加载条件下,TC4绝热剪切带的扩展速度在460~1 250 m/s之间,且应变率越高,剪切带扩展越快,扩展平均速度与名义应变率近似呈线性关系;另外,在同一加载速率下,剪切带并不是匀速扩展,其扩展速度随载荷的增加而不断增加。Abstract: Two types (single-edged and double-edged) of TC4 (Ti-6Al-4V) alloy samples are tested by using the split-Hopkinson bar system under the strain rate of 104 s-1. By using ultra-high speed photography, the initialization and propagation of adiabatic shear band (ASB) are obtained with sufficient resolution. The relationship of the mechanical properties is built. The width of the shear band is observed to be 5-12 μm by using metallurgical microscope and scanning electron microscopy (SEM). Shear dimples and smooth regions are observed in the fracture surfaces as well. However, no obvious phase-transfer are detected. The double-edged samples have shown a better performance because of the relatively negligible bending during experimenting. The critical shear strain at which ASB appears is between 78%-88% and the propagation speed is estimated to be in the range of 460-1 250 m/s. It is also found that when strain rate rises, the shear bands propagate faster. Moreover, the propagation speed increases as the loading process proceeds and the speed is linearly proportional with the nominal strain rate.
-
表 1 实验结果
Table 1. Experimental results
编号 v/(m·s-1) εc ${{\dot \varepsilon }_{\rm{s}}}$/(104) W/μm TC4-A-1 21.4 2.5 3.0 - TC4-A-2, 3, 4 23.6 3.0 3.3 - TC4-A-5, 6, 7 28.2 3.2 3.5 5~10 TC4-A-8, 9, 10 29.6 3.2 3.6 5~10 TC4-B-1, 2, 3 22.3 3.0 4.0 - TC4-B-4, 5, 6 25.5 3.1 5.0 8~12 TC4-B-7, 8, 9 29.1 3.2 6.0 8~12 TC4-B-10, 11, 12 33.9 3.4 6.3 8~12 表 2 局部剪切应变最大值
Table 2. The maximum of local shear stain
编号 ${\dot \varepsilon }$/(104) εp d e f TC4-B6 5.0 0.78 2.21 3.07 TC4-B9 6.0 0.79 2.27 3.11 TC4-B12 6.3 0.81 2.32 3.20 -
[1] Laboulaye C, M Tiers C N D A E, De Laboulaye C P L. Annales du conservatoire des arts et métiers[M]. Gathier-Villars, 1863. [2] Dodd B, Bai Y. Adiabatic shear localization: Frontiers and advances[M]. Elsevier Science, 2012. [3] Zener C, Hollomon J. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32. doi: 10.1063/1.1707363 [4] Peirs J, Verleysen P, Degrieck J, et al. The uses of hat-shaped specimens to study the high strain rate shear behaviour of Ti-6Al-4V[J]. International Journal of Impact Engineering, 2010, 37(6): 703-714. doi: 10.1016/j.ijimpeng.2009.08.002 [5] Guo Y, Li Y. A novel approach to testing the dynamic shear response of Ti-6Al-4V[J]. Acta Mechanica Solida Sinica, 2012, 25(3): 299-311. doi: 10.1016/S0894-9166(12)60027-5 [6] Timothy S, Hutchings I. Initiation and growth of microfractures along adiabatic shear bands in Ti-6AI-4V[J]. Materials Science and Technology, 1985, 1(7): 526-530. doi: 10.1179/mst.1985.1.7.526 [7] Liao S-C, Duffy J. Adiabatic shear bands in a Ti-6Al-4V titanium alloy[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(11): 2201-2231. doi: 10.1016/S0022-5096(98)00044-1 [8] Rittel D, Wang Z. Thermo-mechanical aspects of adiabatic shear failure of AM50 and Ti6Al4V alloys[J]. Mechanics of Materials, 2008, 40(8): 629-635. doi: 10.1016/j.mechmat.2008.03.002 [9] Kolsky H. An investigation of the mechanical properties of materials at very high rates of loading[J]. Proceedings of the Physical Society Section B, 1949, 62(11): 676. doi: 10.1088/0370-1301/62/11/302 [10] Baker W E, Yew C. Strain-rate effects in the propagation of torsional plastic waves[J]. Journal of Applied Mechanics, 1966, 33(4): 917-923. doi: 10.1115/1.3625202 [11] Culver R S. Torsional-impact apparatus[J]. Experimental Mechanics, 1972, 12(9): 398-405. doi: 10.1007/BF02318550 [12] Wright T W. The physics and mathematics of adiabatic shear bands[M]. Cambridge, UK: Cambridge University Press, 2002. [13] Meyer L, Staskewitsch E, Burblies A. Adiabatic shear failure under biaxial dynamic compression/shear loading[J]. Mechanics of Materials, 1994, 17(2): 203-214. [14] Engineers I O M. Journal of mechanical engineering science[M]. Institution of Mechanical Engineers, 1960. [15] Guo Y Z, Li Y L, Pan Z, et al. A numerical study of microstructure effect on adiabatic shear instability: Application to nanostructured/ultrafine grained materials[J]. Mechanics of Materials, 2010, 42(11): 1020-1029. doi: 10.1016/j.mechmat.2010.09.002 [16] Xu Y, Zhang J, Bai Y, et al. Shear localization in dynamic deformation: microstructural evolution[J]. Metallurgical and materials transactions A, 2008, 39(4): 811-843. doi: 10.1007/s11661-007-9431-z [17] Marchand A, Duffy J. An experimental study of the formation process of adiabatic shear bands in a structural steel[J]. Journal of the Mechanics and Physics of Solids, 1988, 36(3): 251-283. doi: 10.1016/0022-5096(88)90012-9 [18] Mason J J, Rosakis A J, Ravichandran G. Full field measurements of the dynamic deformation field around a growing adiabatic shear band at the tip of a dynamically loaded crack or notch[J]. Journal of the Mechanics and Physics of Solids, 1994, 42(11): 1679-1697. doi: 10.1016/0022-5096(94)90067-1 [19] Zhou M, Rosakis A, Ravichandran G. Dynamically propagating shear bands in impact-loaded prenotched plates: Ⅰ: Experimental investigations of temperature signatures and propagation speed[J]. Journal of the Mechanics and Physics of Solids, 1996, 44(6): 981-1006. doi: 10.1016/0022-5096(96)00003-8 [20] Zhou M, Ravichandran G, Rosakis A. Dynamically propagating shear bands in impact-loaded prenotched plates-Ⅱ. Numerical simulation[J]. Journal of the Mechanics and Physics of Solids, 1996, 44(6): 1007-1032. doi: 10.1016/0022-5096(96)00004-X [21] Chichili D R, Ramesh K, Hemker K J. Adiabatic shear localization in α-titanium: Experiments, modeling and microstructural evolution[J]. Journal of the Mechanics and Physics of Solids, 2004, 52(8): 1889-1909. doi: 10.1016/j.jmps.2004.02.013 [22] Meyers M, Subhash G, Kad B, et al. Evolution of microstructure and shear-band formation in α-hcp titanium[J]. Mechanics of Materials, 1994, 17(2): 175-193. https://www.sciencedirect.com/science/article/pii/0167663694900582 [23] Goods S, Brown L. Overview No. 1: The nucleation of cavities by plastic deformation[J]. Acta Metallurgica, 1979, 27(1): 1-15. doi: 10.1016/0001-6160(79)90051-8 [24] Timothy S, Hutchings I. The structure of adiabatic shear bands in a titanium alloy[J]. Acta Metallurgica, 1985, 33(4): 667-676. doi: 10.1016/0001-6160(85)90030-6 [25] Zhang J, Tan C, Ren Y, et al. Adiabatic shear fracture in Ti-6Al-4V alloy[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(11): 2396-2401. doi: 10.1016/S1003-6326(11)61026-1