[1] |
Mader C L. Numerical modeling of explosives and propellants[M]. 2nd ed. New York: CRC Press, 1998.
|
[2] |
Henshaw W D, Schwedeman D W. An adaptive numerical scheme for high-speed reactive flow on overlapping grids[J]. Journal of Computational Physics, 2003, 19(2): 420-447. https://www.sciencedirect.com/science/article/pii/S0021999103003231
|
[3] |
Kapila A K, Schwedeman D W, Bdzil J B. A study of detonation diffraction in the ignition-and-growth model[J]. Combustion Theory and Modeling, 2007(11): 781-822. https://www.researchgate.net/publication/245326055_Study_of_detonation_diffraction_in_the_ignition-and-growth_model
|
[4] |
Banks J W, Schwedeman D W, Kapila A K. A study of detonation propagation and diffraction with compliant confinement[R]. UCRL-JRNL-233735, 2007.
|
[5] |
Schwedeman D W, Kapila A K, Henshaw W D. A study of detonation diffraction and failure for a model of compressible reactive flow[R]. UCRL-JRNL-M43735, 2010.
|
[6] |
Yee H C, Kotov D V, Sjogreen B. Numerical dissipation and wrong propagation speed of discontinuties for stiff source terms[C]∥Proceedings of ICCFD. Hawaii, 2011.
|
[7] |
Yee H C, Kotov D V, Shu C W. Spurious behavior of shock-capturing methods: Problems containing stiff source terms and discontuities[C]∥Proceedings of ICCFD7, 2012.
|
[8] |
孙承纬, 卫玉章, 周之奎.应用爆轰物理[M].北京: 国防工业出版社, 2000.
|
[9] |
Hundsdorfer W, Ruuth S J. IMEX extensions of linear multistep methods with general monotonicity and boundedness properties[J]. Journal of Computational Physics, 2007(225): 2016-2042. https://www.sciencedirect.com/science/article/pii/S0021999107001003
|
[10] |
Liu T P. Hyperbolic conservation laws with relaxation[J]. Communications in Mathematical Physics, 1987(108): 153-175. doi: 10.1007/BF01210707
|
[11] |
Jin S, Xin Z. The relaxation schemes for systems of conservation laws in arbitrary space dimensions[J]. Communications of Pure and Applied Mathematics, 1995(48): 235-276. doi: 10.1002/cpa.3160480303/full
|
[12] |
Chalabi A. Convergence of relaxation schemes for hyperbolic conservation laws with stiff source[J]. Mathematics of Computation, 1999(68): 955-970.
|
[13] |
Tang T. Convergence of MUSCL relaxing scheme to the relaxed scheme for conservation laws with stiff source terms[J]. Journal of Scientific Computing, 2000, 15(2): 173-195. doi: 10.1023/A:1007681726414
|
[14] |
Henrick A K, Aslam T D, Powers J M. Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points[J]. Journal of Computational Physics, 2005(207): 542-567. https://www.sciencedirect.com/science/article/pii/S0021999105000409
|