Dynamic response of multi-layer steel cylinder under internal intense blast loading
-
摘要: 为评估内部爆炸作用下多层钢筒结构的防护效果,考察多层钢筒结构动态响应和变形吸能特征,采用两端开口、总厚度为50 mm的4层圆柱形Q345钢筒,在8.90~18.18 kg TNT药量下进行爆炸实验,并在容器外壁进行应变电测。实验后钢筒结构爆心局部发生塑性变形,内层钢筒变形最大,但未发生破坏。根据研究得到初步认识:采用爆心单位环面变形吸能的设计方法,可以较好地预估给定药量下所需钢筒的厚度;不同药量下,轴向距离超过多层钢筒结构的1/4内径后,其外壁环向变形峰值约减小为爆心截面环向应变峰值的1/2。Abstract: In order to evaluate the protective effect and analyze the dynamic response of multi-layer steel cylinder under internal blast loading, we have conducted four experiments, with three different charge mass, ranging from 8.90 to 18.18 kg. The multi-layer steel cylinder we used is composed of 4 layers made of Q345 steel. The 4 layers altogether are 50 mm in thickness, with the 3 inner ones as 10 mm and the outer one as 20 mm respectively. The diameter of the innermost layer is 800 mm and the distance between layers is 5 mm. At the section of charge center and 20 cm axial distance from the charge, the hoop strain and axial strain are measured by eight strain gauges set on the outside of steel shell. Under the blast loading, the plastic deformation occurred locally at the charge center, and the largest deformation appeared at the innermost layer. However, even in the circumstance of the largest charge mass, there is no failure. It is concluded that the thickness of the steel cylinder could be predicted accurately with the energy absorbing design method applied to the unit section of the charge center of the multi-layer steel cylinder. With a proper change in charge mass, the peak hoop strain can reduce to about 1/2 of the section at the charge center, when the axial distance is beyond the 1/4 diameter of the inner layer.
-
表 1 爆心位置的残余变形
Table 1. Residual strain of the explosion center
WTNT/kg L/mm l/mm εr1/% εr2/% 8.90 292.4 293.45 0.36 0.24 8.90 292.0 293.05 0.36 0.43 10.91 292.4 294.25 0.63 1.3 18.18 292.3 300.60 2.80 -
[1] 赵士达.爆炸容器[J].爆炸与冲击, 1989, 9(1): 85-96. http://www.bzycj.cn/article/id/10877Zhao Shi-da. Blast chamber[J]. Explosion and Shock Waves, 1989, 9(1): 85-96. http://www.bzycj.cn/article/id/10877 [2] 胡八一, 柏劲松, 刘大敏, 等.爆炸容器的工程设计方法及应用[J].压力容器, 2000, 17(2): 39-41. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=YLRQ200002010Hu Ba-yi, Bai Jin-song, Liu Da-min, et al. The engineering design method of explosion-containment vessel and its application[J]. Pressure Vessel Technology, 2000, 17(2): 39-41. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=YLRQ200002010 [3] Ashby M F, Evans A, Fleck N A. Metal foams: A design guide[M]. Stoneham, MA: Butterworth-Heineman, 2000. [4] 周刚, 唐玉志, 关锦清, 等.允许塑性变形爆炸容器的设计及实验探索[J].北京理工大学学报, 2003, 23(增刊): 267-272. http://d.wanfangdata.com.cn/Conference/4506287Zhou Gang, Tang Yu-zhi, Guan Jin-qing, et al. Explore of design and experiments for plastically deformed explosion containment vessels[J]. Transactions of Beijing Institute of Technology, 2003, 23(suppl): 267-272. http://d.wanfangdata.com.cn/Conference/4506287 [5] Cui Yun-xiao, Hu Yong-le, Wang Wan-peng, et al. Experimental analysis of a sand tamped explosion vessel[C]∥Huang Feng-lei. Proceedings of the 7th International Conference on Shock & Impact Loads on Structures. Beijing, 2007: 187-194. [6] Wang Wan-peng, Hu Yong-le, Lin Jun-de, et al. Experiments and numerical analyses on dynamic deformation of steel-concrete structure under internal intense blast loading[C]∥Huang Feng-lei. Proceedings of the 7th International Conference on Shock & Impact Loads on Structures. Beijing, 2007: 613-620. [7] Taylor G I. The fragmentation of tubular bombs[M]∥The Scientific Papers of Sir G. I. Taylor. Cambridge: Cambridge University Press, 1963: 387-390. [8] 钟方平.双层圆柱形爆炸容器的弹塑性力学问题的实验和理论研究[D].合肥: 中国科学技术大学, 1998. [9] 钟方平, 马艳军, 张德志, 等.多层圆柱形钢筒在球形和柱形装药爆炸作用下塑性变形的研究[J].兵工学报, 2009, 30(增刊2): 194-196. http://www.cnki.com.cn/Article/CJFDTotal-BIGO2009S2041.htmZhong Fang-ping, Ma Yan-jun, Zhang De-zhi, et al. Research on plastic deformation of multi-layer cylindrical steel tube subjected to blasts of spherical and cylindrical charges[J]. Acta Armamentarii, 2009, 30(suppl 2): 194-196. http://www.cnki.com.cn/Article/CJFDTotal-BIGO2009S2041.htm [10] 郑津洋, 邓贵德, 陈勇军, 等.离散多层厚壁爆炸容器抗爆性能试验研究[J].爆炸与冲击, 2005, 25(6): 506-511. doi: 10.11883/1001-1455(2005)06-0506-06Zheng Jin-yang, Deng Gui-de, Chen Yong-jun, et al. Experimental investigation on dynamic response and fracture characteristics of discrete multilayered thick-walled explosion containment vessels[J]. Explosion and Shock Waves, 2005, 25(6): 506-511. doi: 10.11883/1001-1455(2005)06-0506-06 [11] Pastrnak J W, Henning C D, Switzer V A, et al. Seal monitoring system for an explosive containment vessel[R]. LLNL: UCRL-CONF-205421, 2004. [12] 穆朝民, 任辉启, 李永池, 等.爆室内爆炸流场演化与壳体动力响应研究[J].振动与冲击, 2009, 28(10): 106-111. http://www.cnki.com.cn/Article/CJFDTotal-ZDCJ200910023.htmMu Chao-min, Ren Hui-qi, Li Yong-chi, et al. Blast flow field evolution and dynamic response of a blast chamber[J]. Journal of Vibration and Shock, 2009, 28(10): 106-111. http://www.cnki.com.cn/Article/CJFDTotal-ZDCJ200910023.htm [13] 霍宏发.组合式爆炸容器动态特性分析及实验研究[D].西安: 西安交通大学, 2000.