高应变率下断裂韧性实验的数值模拟

叶波 巫绪涛 胡凤辉 廖礼

叶波, 巫绪涛, 胡凤辉, 廖礼. 高应变率下断裂韧性实验的数值模拟[J]. 爆炸与冲击, 2016, 36(3): 416-421. doi: 10.11883/1001-1455(2016)03-0416-06
引用本文: 叶波, 巫绪涛, 胡凤辉, 廖礼. 高应变率下断裂韧性实验的数值模拟[J]. 爆炸与冲击, 2016, 36(3): 416-421. doi: 10.11883/1001-1455(2016)03-0416-06
Ye Bo, Wu Xutao, Hu Fenghui, Liao Li. Numerical simulation of fracture toughness test under high strain rate[J]. Explosion And Shock Waves, 2016, 36(3): 416-421. doi: 10.11883/1001-1455(2016)03-0416-06
Citation: Ye Bo, Wu Xutao, Hu Fenghui, Liao Li. Numerical simulation of fracture toughness test under high strain rate[J]. Explosion And Shock Waves, 2016, 36(3): 416-421. doi: 10.11883/1001-1455(2016)03-0416-06

高应变率下断裂韧性实验的数值模拟

doi: 10.11883/1001-1455(2016)03-0416-06
基金项目: 

国家自然科学基金项目 11072072

详细信息
    作者简介:

    叶波(1991-),男,硕士研究生

    通讯作者:

    巫绪涛,wuxvtao@sina.com

  • 中图分类号: O347.3

Numerical simulation of fracture toughness test under high strain rate

  • 摘要: 采用有限元软件ANSYS/LS-DYNA程序对静态和冲击荷载作用下的含裂纹半圆弯曲(SCB)实验进行了数值模拟。根据静态实验的模拟结果,提出了适合复合型加载的Ⅰ型应力强度因子拟合公式,采用该公式计算应力强度因子的最大误差不超过10%。动态实验的模拟结果表明:对于纯Ⅰ型加载的SCB实验,动态应力强度因子随着试样半径、支座间距以及相对裂纹长度的变化呈现规律性变化;当试样半径小于60mm、相对支座间距为1.2、相对裂纹长度在0.1~0.4范围内时,惯性效应的影响较小,采用静态拟合公式计算裂尖的动态应力强度因子的误差约10%;对于复合型加载的SCB实验,当相对裂纹长度为0.2~0.4、裂纹倾角在10°~40°范围内时,采用静态拟合公式计算裂尖的动态应力强度因子的误差小于10%。
  • 图  1  静态复合型加载SCB实验简图

    Figure  1.  Diagram of static SCB test under mixed mode loading

    图  2  静态复合型加载SCB实验应力强度因子拟合结果

    Figure  2.  Fitted effect of stress intensity factor in static SCB test under mixed mode loading

    图  3  基于SHPB装置的动态SCB实验有限元模型

    Figure  3.  Finite element model of dynamic SCB test based on SHPB device

    图  4  三角形速度脉冲

    Figure  4.  Triangular velocity pulse

    图  5  不同相对裂纹长度下的应力强度因子变化规律

    Figure  5.  Variation of stress intensity factor for different relative crack lengths

    图  6  不同试样半径下应力强度因子的变化规律

    Figure  6.  Variation of stress intensity factor for different sample radiuses

    图  7  不同支座间距下应力强度因子的变化规律

    Figure  7.  Variation of stress intensity factor for different distances between two supports

    图  8  KⅠd1KⅠd2的比较(a/R=0.4)

    Figure  8.  Comparison of KⅠd1 and KⅠd2 (a/R=0.4)

    图  9  静态公式的相对误差随a/R的变化

    Figure  9.  Relative error of static formula for different a/R

    图  10  KⅠd1max随裂纹倾角β的变化规律

    Figure  10.  Variation of KⅠd1max with crack angle β

    图  11  KⅠd1max随裂纹相对长度a/R的变化规律

    Figure  11.  Variation of KⅠd1max with relative crack length a/R

    表  1  复合型加载下静态公式计算KⅠdmax的相对误差δm

    Table  1.   Relative errorδm of KⅠdmax in the static formula under mixed-mode loading

    β/(°) δm/%
    a/R=0.2 a/R=0.4 a/R=0.6 a/R=0.7 a/R=0.8
    10 9.6 6.6 -0.7 3.7 26.8
    20 6.4 9.8 19.8 23.2 40.3
    30 5.4 5.6 24.1 39.2 49.1
    40 9.3 0.9 17.2 34.8 138.0
    下载: 导出CSV
  • [1] Nakano M, Kashida K, Yamauchi Y, et al. Dynamic fracture initiation in brittle materials under combined mode Ⅰ/Ⅱ loading[J]. Journal De Physique IV, 1994, 4(8):695-700.
    [2] Yamauchi Y, Nakano M, Kishida K, et al.Measurement of fracture toughness for brittle materials under mixed-mode impact loading using center-notched disk specimen[J]. Journal of the Society of Materials Science Japan, 2000, 49(12):1324-1329. doi: 10.2472/jsms.49.1324
    [3] Ayatollahi M R, Aliha M R M, Hassani M M. Mixed mode brittle fracture in PMMA-An experimental study using SCB specimens[J]. Materials Science and Engineering A, 2006, 417(1/2):348-356. http://www.sciencedirect.com/science/article/pii/S0921509305013821
    [4] Ayatollahi M R, Aliha M R M. On determination of mode Ⅱ fracture toughness using semi-circular bend specimen[J]. International Journal of Solids and Structures, 2006, 43(17):5217-5227. doi: 10.1016/j.ijsolstr.2005.07.049
    [5] Aliha M R M, Ayatollahi, M R. Mixed mode Ⅰ/Ⅱ brittle fracture evaluation of marble using SCB specimen[J]. Procedia Engineering, 2011, 10:311-318. doi: 10.1016/j.proeng.2011.04.054
    [6] Chen R, Xia K W, Dai F et al. Determination of dynamic fracture parameters using a semi-circular bend technique in split Hopkinson pressure bar testing[J]. Engineering Fracture Mechanics, 2009, 76(9):1268-1276. doi: 10.1016/j.engfracmech.2009.02.001
    [7] Dai F, Xia K W, et al. Rate dependence of the flexural tensile strength of Laurentian granite[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(3):469-475. doi: 10.1016/j.ijrmms.2009.05.001
    [8] Dai F, Xia K W, et al. Determination of dynamic rock Mode-I fracture parameters using cracked chevron notched semi-circular bend specimen[J]. Engineering Fracture Mechanics, 2011, 78(15):2633-2644. doi: 10.1016/j.engfracmech.2011.06.022
    [9] Yau J, Wang S, Corten H. A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity[J]. Journal of Applied Mechanics, 1980, 47(2):335-341. doi: 10.1115/1.3153665
    [10] 巫绪涛, 杨伯源.数值外插法求解空间裂纹应力强度因子的研究[J].合肥工业大学学报, 1999, 22(4):26-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199901178006

    Wu Xutao, Yang Boyuan. Study on the numerical extrapolated method for calculating the 3-D crack front stress intensity factor[J]. Journal of Hefei University of Tchnology, 1999, 22(4):26-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199901178006
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  5458
  • HTML全文浏览量:  1774
  • PDF下载量:  713
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-13
  • 修回日期:  2015-02-03
  • 刊出日期:  2016-05-25

目录

    /

    返回文章
    返回