内爆加载金属界面不稳定性的数值分析

郝鹏程 冯其京 胡晓棉

郝鹏程, 冯其京, 胡晓棉. 内爆加载金属界面不稳定性的数值分析[J]. 爆炸与冲击, 2016, 36(6): 739-744. doi: 10.11883/1001-1455(2016)06-0739-06
引用本文: 郝鹏程, 冯其京, 胡晓棉. 内爆加载金属界面不稳定性的数值分析[J]. 爆炸与冲击, 2016, 36(6): 739-744. doi: 10.11883/1001-1455(2016)06-0739-06
Hao Pengcheng, Feng Qijing, Hu Xiaomian. A numerical study of the instability of the metal shell in the implosion[J]. Explosion And Shock Waves, 2016, 36(6): 739-744. doi: 10.11883/1001-1455(2016)06-0739-06
Citation: Hao Pengcheng, Feng Qijing, Hu Xiaomian. A numerical study of the instability of the metal shell in the implosion[J]. Explosion And Shock Waves, 2016, 36(6): 739-744. doi: 10.11883/1001-1455(2016)06-0739-06

内爆加载金属界面不稳定性的数值分析

doi: 10.11883/1001-1455(2016)06-0739-06
基金项目: 

国家自然科学基金项目 11372052

国家自然科学基金项目 U1430235

国家自然科学基金项目 11402029

中国工程物理研究院科学技术发展基金项目 2015B0101021

国家自然科学基金项目 11371069

详细信息
    作者简介:

    郝鹏程(1980—),男,博士研究生,副研究员, hao_pengcheng@iapcm.ac.cn

  • 中图分类号: O357.41

A numerical study of the instability of the metal shell in the implosion

  • 摘要: 采用自行研制的多介质弹塑性流体力学欧拉程序,对柱形内爆加载金属界面不稳定性进行了数值研究,数值模拟结果与文献实验数据吻合较好。数值结果表明:材料强度对界面不稳定性发展有不可忽略的抑制作用;材料屈服强度对较高模数不稳定性增长的抑制较强,而剪切模量对不稳定性发展的影响相似但敏感性相对较弱;金属界面不稳定性增长存在最不稳定模数,最不稳定模数随屈服强度增加而减小,并近似与屈服强度的对数呈线性关系;随着壳的厚度减小,扰动增长加快。
  • 图  1  柱形内爆计算模型

    Figure  1.  Computational model in cylindrical implosion

    图  2  金属壳外壁压力

    Figure  2.  Pressure on outer interface of metal shell

    图  3  金属壳内壁速度

    Figure  3.  Velocity on inner interface of metal shell

    图  4  密度等值云图(n=29)

    Figure  4.  Density contour plot

    图  5  金属界面扰动增长

    Figure  5.  Growth of metal interfacial perturbation amplitude

    图  6  材料屈服强度对界面扰动增长的影响

    Figure  6.  Effect of yield strength on perturbation growth

    图  7  材料剪切模量对界面扰动增长的影响

    Figure  7.  Effect of shear strength on perturbation growth

    图  8  不同屈服强度下扰动模数与扰动增长的关系

    Figure  8.  Effect of perturbation mode on perturbation growth under different yield strength

    图  9  最不稳定模数与屈服强度的关系

    Figure  9.  Relationship between yield strength and most instable mode

    图  10  不同金属壳厚度下的扰动增长

    Figure  10.  Effect of shell thickness on perturbation growth

    图  11  不同金属壳厚度下最不稳定模数与屈服强度的关系

    Figure  11.  Relationship between yield strength andmost instable mode with different shell thicknesses

  • Piriz A R, Lopez Cela J J, Tahir N A, et al. Richtmyer-Meshkov instability in elastic-plastic media[J]. Physical Review E, 2008, 78(5):056401. doi: 10.1103/PhysRevE.78.056401
    Piriz A R, Lopez Cela J J, Tahir N A. Linear analysis of incompressible Rayleigh-Taylor instability in solids[J]. Physical Review E, 2009, 80(4):046305. doi: 10.1103/PhysRevE.80.046305
    Miles J W. Taylor instability of a flat plate[R]. San Diego: General Dynamics, GAMD-7335, 1966.
    Drucker D C. "Taylor instability" of the surface of an elastic-plastic plate[C]//Nemat-Nasser C. Mechanics Today, Vol. 5. New York: Pergamon Press, 1980: 37-47.
    Lebedev A I, Nizovtsev P N, Rayevsky V A. Rayleigh-Taylor instability in solids[C]//4th International Workshop on the Physics of Compressible Turbulent Mixing (IWPCTM). Cambridge, England, 1993.
    Barnes J F, Blewett P J, McQueen R G, et al. Taylor instability in solids[J]. Journal of Applied Physics, 1974, 45(2):727-732. doi: 10.1063/1.1663310
    Swegle J W, Robinson A C. Acceleration instability in elastic-plastic solids. I. Numerical simulations of plate acceleration[J]. Journal of Applied Physics, 1989, 66(7):2838-2858. doi: 10.1063/1.344190
    Mikaelian K. Effect of viscosity on Rayleigh-Taylor and Richtmyer-Meshkov instabilities[J]. Physical Review E, 1993, 47(1):375-383. doi: 10.1103/PhysRevE.47.375
    Colvin J D, Legrand M, Remington B A, et al. A model for instability growth in accelerated solid metals[J]. Journal of Applied Physics, 2003, 93(9):5287-5301. doi: 10.1063/1.1565188
    Atchison W L, Zocher M A, Kaul A M. Studies of material constitutive behavior using perturbation growth in explosive and magnetically driven liner systems[J]. Russian Journal of Physical Chemistry B, 2008, 2(3):387-401. doi: 10.1134/S199079310803010X
    Dimonte G, Terrones G, Cheme F J, et al. Use of the Richtmyer-Meshkov instability to infer yield stress at high-energy density[J]. Physical Review Letters, 2011, 107(26):264502. doi: 10.1103/PhysRevLett.107.264502
    Frachet V, Geleznikoff F, Guix R, et al. Rayleigh Taylor instability in cylindrical configuration[C]//2nd International Workshop on the Physics of Compressible Turbulent Mixing (IWPCTM). Pleasanton, CA, 1989.
    Park H S, Lorenz K T, Cavallo R M, et al. Viscous Rayleigh-Taylor instability experiments at high pressure and strain rate[J]. Physical Review Letters, 2010, 104(13):135504. doi: 10.1103/PhysRevLett.104.135504
    刘军, 冯其京, 周海兵.柱面内爆驱动金属界面不稳定性的数值模拟研究[J].物理学报, 2014, 63(15):155201. doi: 10.7498/aps.63.155201

    Liu Jun, Feng Qijing, Zhou Haibing. Simulation study of interface instability in metals driven by cylindrical implosion[J]. Acta Physica Sinica, 2014, 63(15):155201. doi: 10.7498/aps.63.155201
    冯其京, 郝鹏程, 杭义洪, 等.聚能装药的欧拉数值模拟[J].爆炸与冲击, 2008, 28(2):138-143. doi: 10.3321/j.issn:1001-1455.2008.02.007
  • 加载中
图(11)
计量
  • 文章访问数:  4312
  • HTML全文浏览量:  1154
  • PDF下载量:  567
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-30
  • 修回日期:  2015-08-17
  • 刊出日期:  2016-11-25

目录

    /

    返回文章
    返回