scaled-down underwater explosion model on a centrifuge apparatus
-
摘要: 对离心机水下爆炸缩比实验方法进行探究,对离心机水下爆炸缩比实验的相似理论进行了推导,通过数值计算分析,探究了原模型、离心机缩比实验及常规缩比实验的冲击波载荷、气泡载荷以及气泡动力学行为。结果表明:常规缩比实验不能对气泡行为及垂直方向的近场载荷进行准确的预报,若要保证远场气泡脉冲峰值误差小于10%,则爆距需大于9.5倍气泡最大半径。而离心机缩比实验能够对原模型进行准确的预报,以小当量装药模拟大当量装药水下爆炸整个物理过程,且冲击波和气泡两个阶段完全相似。同时,水深也可以进行几何缩比,克服了常规缩比方法的缺陷。Abstract: In this paper, we investigated a novel method by carrying out a sclaed down underwater explosion experiment on a centrifuge apparatus and set up the similarity theory between the scaled down and actual underwater explosion experiment. Using numerical simulation, we also investigated the shock-wave load, the bubble load and bubble dynamic behaviors between original models, the novel scaled down experimental method and the conventional method. The results from our study indicate that the conventional scaled down model experiment is unable to accurately predict the bubble dynamics and the vertical near-field loading induced by the bubble collapse. When the deviation of the far-field bubble pulse is limited within 10%, the distance between the explosion source and the measuring point has to be larger than 9.5 times that of the maximum radius of the bubble. However, the novel experimental method can make a precise prediction for the original model. The experiment of a mini-charge underwater explosion almost reproduces the whole physical process of a mass-charge underwater explosion with the completely similar stages of the shock wave and the bubble. In addition, the depth of the water can also be scaled down, thereby overcoming the disadvantages of the conventional method. The present study aims at providing a novel way to perform underwater explosion model experiments.
-
Key words:
- mechanics of explosion /
- scaled down experiment /
- centrifuge /
- underwater explosion /
- bubble
-
表 1 量纲
Table 1. Dimensions
变量 物理量 符号 量纲 冲击波/气泡压力峰值 pmax L-1MT-2 因变量 周期/衰减常数 T T 气泡最大半径 Rb, max L 流体密度 ρw L-3M 爆点处流体静水压 pw L-1MT-2 炸药密度 ρc L-3M 自变量 药包半径 r L 单位质量爆热 Q L2T-2 水中声速 cw LT-1 重力加速度 g LT-2 表 2 模型与原型的相似关系
Table 2. Similar relation between original experiment and scaled down experiment
物理量 符号 原型模型比 爆距 R λ 爆热 Q 1 爆点处流体静压 pw 1 流体密度 ρw 1 声速 cw 1 装药密度 ρc 1 药包半径 r λ 重力加速度 g 1/λ 装药质量 W λ3 冲击波压力峰值 ps, max 1 二次脉动压力峰值 pb, max 1 冲击波时间衰减常数 Ts λ 脉动周期 Tb λ 气泡最大半径 Rb, max λ 表 3 工况设置(λ=100)
Table 3. Conditions
模型 药量/kg 水深/m 惯性加速度/g 原模型 500 50 1 常规缩比实验 5×10-4 50 1 离心机缩比实验 5×10-4 0.5 100 -
[1] Cole R H, Weller R. Underwater explosions[J]. Physics Today, 1948, 1(6):35. http://d.old.wanfangdata.com.cn/Periodical/hebgcdxxb200704001 [2] 张效慈.水下爆炸实验相似准则[J].船舶力学, 2007, 11(1):108-118. doi: 10.3969/j.issn.1007-7294.2007.01.014Zhang Xiaoci. Similarity criteria for experiment of underwater explosion[J]. Journal of Ship Mechanics, 2007, 11(1):108-118. doi: 10.3969/j.issn.1007-7294.2007.01.014 [3] 范一锴, 陈祖煜, 梁向前, 等.砂中爆炸成坑的离心模型试验分析方法比较[J].岩石力学与工程学报, 2011, 30(增刊2): 4123-4128. http://www.cnki.com.cn/Article/CJFDTotal-YSLX2011S2102.htmFan Yikai, Chen Zuyu, Liang Xiangqian, et al. Comparison of three methods for geotechnical centrifuge model tests of explosion cratering in sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(Suppl 2):4123-4128. http://www.cnki.com.cn/Article/CJFDTotal-YSLX2011S2102.htm [4] 范一锴, 梁向前, 陈祖煜, 等.土工离心机用于爆炸模拟的实验研究[C]//中国力学学会工程爆破专业委员会.2011全国爆破理论研讨会论文选编.2011. [5] 王秋生, 陈祖煜, 梁向前.应用离心模型实验研究爆炸荷载效应[C]//中国力学学会爆炸力学专业委员会, 中国土木工程学会防护工程分会.第七届全国工程结构安全防护学术会议论文集.2009. [6] Schofield A N. Geotechnical centrifuge development corrects Tezaghi's errors[C]//Tokyo Conference of TC2. 1998. [7] Chabai A J. Scaling dimensions of craters produced by buried explosions[J]. Journal of Geophysical Research, 1965, 70(20):5075-5098. doi: 10.1029/JZ070i020p05075 [8] 倪宝玉.水下粘性气泡(空泡)运动和载荷特性研究[D].哈尔滨: 哈尔滨工程大学, 2012. [9] 李帅, 张阿漫, 韩蕊.气泡多周期运动时引起的流场压力与速度[J].力学学报, 2014, 46(4):533-543. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb201404007Li Shuai, Zhang Aman, Han Rui. Numerical analysis on the velocity and pressure fields induced by multi-oscillations of an underwater explosion bubble[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4):533-543. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb201404007 [10] 姚熊亮.舰船结构振动冲击与噪声[M].北京:国防工业出版社, 2007. [11] Newman J N. Marine hydrodynamics[M]. MIT Press, 1977. [12] Zhang Aman, Yang Wenshan, Huang Chao, et al. Numerical simulation of column charge underwater explosion based on SPH and BEM combination[J]. Computers and Fluids, 2013, 71(3):169-178. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=28d4ca51ab84ac683f68049b5073cb8b [13] Zhang Aman, Wang Shiping, Huang Chao, et al. Influences of initial and boundary conditions on underwater explosion dynamics[J]. European Journal of Mechanics B: Fluids, 2013, 42(2):69-91. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2de6a435f98cc8d926b0a35b1662b7ba [14] Li Shuai, Li Yunbo, Zhang Aman. Numerical analysis of the bubble jet impact on a rigid wall[J]. Applied Ocean Research, 2015, 50(8):227-236. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d85af80ae4fd7e1241b80b6916fd7b12