多种群遗传算法在PBX本构模型参数识别中的应用

高军 黄再兴

高军, 黄再兴. 多种群遗传算法在PBX本构模型参数识别中的应用[J]. 爆炸与冲击, 2016, 36(6): 861-868. doi: 10.11883/1001-1455(2016)06-0861-08
引用本文: 高军, 黄再兴. 多种群遗传算法在PBX本构模型参数识别中的应用[J]. 爆炸与冲击, 2016, 36(6): 861-868. doi: 10.11883/1001-1455(2016)06-0861-08
Gao Jun, Huang Zaixing. Application of multiple-population genetic algorithm in parameter identification for PBX constitutive model[J]. Explosion And Shock Waves, 2016, 36(6): 861-868. doi: 10.11883/1001-1455(2016)06-0861-08
Citation: Gao Jun, Huang Zaixing. Application of multiple-population genetic algorithm in parameter identification for PBX constitutive model[J]. Explosion And Shock Waves, 2016, 36(6): 861-868. doi: 10.11883/1001-1455(2016)06-0861-08

多种群遗传算法在PBX本构模型参数识别中的应用

doi: 10.11883/1001-1455(2016)06-0861-08
详细信息
    作者简介:

    高军(1984—),男,博士研究生, gaojun.nuaa@foxmail.com

  • 中图分类号: O343;TJ55

Application of multiple-population genetic algorithm in parameter identification for PBX constitutive model

  • 摘要: 利用多种群并行结构对标准遗传算法SGA进行并行化处理,引入移民算子和精华种群形成多种群遗传算法MPGA,并设计了自适应交叉和变异概率对算法的收敛速度进行改进。结合ABAQUS软件和改进的多种群遗传算法,建立了材料本构模型参数识别方法。采用该方法对PBX炸药黏弹性损伤本构模型参数进行了模拟识别,并同基于标准遗传算法的参数识别方法进行了比较。结果证明,基于改进多种群遗传算法IMPGA的方法对克服算法未成熟收敛有显著的效果,识别结果更稳定。同时该方法的收敛速度更快,寻优能力更强,适合复杂非线性问题的优化,此方法可以被应用到其他材料本构模型的参数识别中。
  • 图  1  MPGA算法结构图

    Figure  1.  Structure of MPGA

    图  2  参数识别的计算流程

    Figure  2.  Calculation process of parameter identification

    图  3  测点处的载荷-位移曲线

    Figure  3.  Load-displacement curve of measurement point

    图  4  SGA方法适应度

    Figure  4.  Fitness value with SGA

    图  5  MPGA方法适应度

    Figure  5.  Fitness value with MPGA

    图  6  IMPGA方法适应度

    Figure  6.  Fitness value with IMPGA

    图  7  载荷-位移曲线对比

    Figure  7.  Contrast of load-displacement curves

    表  1  参数识别结果

    Table  1.   Results of parameter identification

    识别参数真实值取值范围SGA识别MPGA识别IMPGA识别
    结果误差/%结果误差/%结果误差/%
    E/MPa496.1400~600507.1422.22504.9311.78505.3061.86
    ν0.380.2~0.60.3722.170.3871.930.3731.84
    η260200~300252.4602.90263.381.30263.2561.25
    βm0.60.3~0.90.6193.170.6132.090.5872.16
    βs0.40.1~0.70.3843.860.4143.400.4133.25
    χ155.5100~200148.8144.30149.3583.95149.2494.02
    n0.6280.3~0.90.6432.380.6381.730.6391.75
    下载: 导出CSV
  • [1] 梁增友.炸药冲击损伤与起爆特性[M].北京:电子工业出版社, 2009.
    [2] 郭虎, 罗景润.循环载荷下PBX力学行为研究[J].爆炸与冲击, 2013, 33(增刊1): 105-110. http://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ2013S1019.htm

    Guo Hu, Luo Jingrun. Mechanical behavior of PBX under cyclic loadings[J]. Explosion and Shock Waves, 2013, 33(Suppl 1):105-110. http://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ2013S1019.htm
    [3] Rauchs G, Bardon J. Identification of elasto-viscoplastic material parameters by indentation testing and combined finite element modelling and numerical optimization[J]. Finite Elements in Analysis and Design, 2011, 47(7):653-667. doi: 10.1016/j.finel.2011.01.008
    [4] Springmann M, Kuna M. Identification of material parameters of the Gurson-Tvergaard-Needleman model by combined experimental and numerical techniques[J]. Computational Materials Science, 2005, 32(3/4):544-552. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f907b29be395d8906bcc03bac71e5e48
    [5] Chaparro B M, Thuillier S, Menezes L F, et al. Material parameters identification: Gradient-based, genetic and hybrid optimization algorithms[J]. Computational Materials Science, 2008, 44(2):339-346. doi: 10.1016/j.commatsci.2008.03.028
    [6] Majzoobi G H, Dehgolan F R. Determination of the constants of damage models[J]. Procedia Engineering, 2011, 10:764-773. doi: 10.1016/j.proeng.2011.04.127
    [7] Muñoz-Rojas P A, Cardoso E L, Vaz M. Parameter identification of damage models using genetic algorithms[J]. Experimental Mechanics, 2010, 50(5):627-634. doi: 10.1007/s11340-009-9321-y
    [8] 陈炳瑞, 冯夏庭, 丁秀丽, 等.基于模式-遗传-神经网络的流变参数反演[J].岩石力学与工程学报, 2005, 24(4): 553-558. doi: 10.3321/j.issn:1000-6915.2005.04.002

    Chen Bingrui, Feng Xiating, Ding Xiuli, et al. Back analysis on rheological parameters based on pattern-genetic-neural network[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(4):553-558. doi: 10.3321/j.issn:1000-6915.2005.04.002
    [9] 高军, 黄再兴. PBX炸药粘弹性损伤本构模型的参数识别[J].工程力学, 2013, 30(7): 299-304. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gclx201307045

    Gao Jun, Huang Zaixing. Parameter identification for viscoelastic damage constitutive model of PBX[J]. Engineering Mechanics, 2013, 30(7): 299-304. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gclx201307045
    [10] Solano G J, Rodriguez V K, Garcia N D. Model-based spectral estimation of Doppler signals using parallel genetic algorithms[J]. Artificial Intelligence in Medicine, 2000, 19(1):75-89. doi: 10.1016/S0933-3657(99)00051-2
    [11] 李守巨, 刘迎曦, 孙伟.智能计算与参数反演[M].北京:科学出版社, 2008.
    [12] Cantu-Paz E. Designing efficient and accurate parallel genetic algorithms (parallel algorithms)[D]. University of Illinois at Urbana-Champaign, 1999. http://link.springer.com/978-1-4615-4369-5
    [13] Potts J C, Giddens T D, Yadav S B. The development and evaluation of an improved genetic algorithm based on migration and artificial selection[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1994, 24(1):73-86. doi: 10.1109/21.259687
    [14] 刘桂萍.基于微型遗传算法的多目标优化方法及应用研究[D].长沙: 湖南大学, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10532-2008081553.htm
    [15] Sheblé G B, Brittig K. Refined genetic algorithm-economic dispatch example[J]. IEEE Transactions on Power Systems, 1995, 10(1):117-124. doi: 10.1109/59.373934
    [16] Paris P C, Erdogan F. A critical analysis of crack propagation laws[J]. Journal of Fluids Engineering, 1963, 85(4):528-533.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  4217
  • HTML全文浏览量:  1216
  • PDF下载量:  368
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-27
  • 修回日期:  2015-05-28
  • 刊出日期:  2016-11-25

目录

    /

    返回文章
    返回