考虑微观结构特征长度演化的内变量黏塑性本构模型

谭阳 迟毅林 黄亚宇 姚廷强

谭阳, 迟毅林, 黄亚宇, 姚廷强. 考虑微观结构特征长度演化的内变量黏塑性本构模型[J]. 爆炸与冲击, 2016, 36(6): 869-875. doi: 10.11883/1001-1455(2016)06-0869-07
引用本文: 谭阳, 迟毅林, 黄亚宇, 姚廷强. 考虑微观结构特征长度演化的内变量黏塑性本构模型[J]. 爆炸与冲击, 2016, 36(6): 869-875. doi: 10.11883/1001-1455(2016)06-0869-07
Tan Yang, Chi Yilin, Huang Yayu, Yao Tingqiang. An internal state variable viscoplastic constitutive model considering the evolution of microstructural characteristic length[J]. Explosion And Shock Waves, 2016, 36(6): 869-875. doi: 10.11883/1001-1455(2016)06-0869-07
Citation: Tan Yang, Chi Yilin, Huang Yayu, Yao Tingqiang. An internal state variable viscoplastic constitutive model considering the evolution of microstructural characteristic length[J]. Explosion And Shock Waves, 2016, 36(6): 869-875. doi: 10.11883/1001-1455(2016)06-0869-07

考虑微观结构特征长度演化的内变量黏塑性本构模型

doi: 10.11883/1001-1455(2016)06-0869-07
基金项目: 

国家自然科学基金项目 11462008

详细信息
    作者简介:

    谭阳(1981—),男,博士研究生, t_y2004@126.com

  • 中图分类号: O344.4

An internal state variable viscoplastic constitutive model considering the evolution of microstructural characteristic length

  • 摘要: 在金属晶体材料高应变率大应变变形过程中,存在强烈的位错胞尺寸等微观结构特征长度细化现象,势必对材料加工硬化、宏观塑性流动应力产生重要影响。基于宏观塑性流动应力与位错胞尺寸成反比关系,提出了一种新型的BCJ本构模型。利用位错胞尺寸参数,修正了BCJ模型的流动法则、内变量演化方程,引入了考虑应变率和温度相关性的位错胞尺寸演化方程,建立了综合考虑微观结构特征长度演化、位错累积与湮灭的内变量黏塑性本构模型。应用本文模型,对OFHC铜应变率在10-4~103 s-1、温度在298~542 K、应变在0~1的实验应力-应变数据进行了预测。结果表明:在较宽应变率、温度和应变范围内,本文模型的预测数据与实验吻合很好;与BCJ模型相比,对不同加载条件下实验数据的预测精度均有较大程度的提高,最大平均相对误差从9.939%减小为5.525%。
  • 图  1  位错胞亚结构

    Figure  1.  Substructure of dislocation cells

    图  2  OFHC铜的应力-应变数据

    Figure  2.  The stress-strain data for OFHC Cu

    图  3  应变率跳跃实验的应力-应变曲线

    Figure  3.  Stress-strain curves in strain rate jump experiment

    图  4  预测的位错胞尺寸演化曲线

    Figure  4.  Predicted evolution of cell size for different experimental conditions

    表  1  参数识别的实验数据

    Table  1.   Experimental data for parameters identification

    CurveStrain rate/s-1Temperature/K
    14.0×10-4298
    24.0×10-4407
    30.01298
    40.1298
    51298
    61542
    75.2×103542
    86.0×103298
    下载: 导出CSV

    表  2  参数取值范围和优化识别的材料参数

    Table  2.   Value domains and identified material parameters

    Material
    parameters
    Estimated
    low limit
    Estimated
    upper limit
    Identified
    values
    C1/MPa1.659×10-71 214.3366.591×10-7
    C2/K-5 052.1552 994.571-4 170.1
    C3/MPa0.017 521.7472.519
    C4/K1.22 200.608593.5
    C5/s-12.760×10-41 628.5081 622.224
    C6/K-9 072.07 917.0293 786.757
    C7/MPa-10.010 70.1390.113
    C8/K-3.0721 005.614355.623
    C9/MPa46.528892.555880.38
    C10/K0.041 1842.0390.053 9
    C11/(s·MPa)-12.200×10-60.018 12.500×10-6
    C12/K26.9567 507.2263 656.84
    C13/MPa-10.003 283.2442.297
    C14/K-1 425.5441 598.282507.016
    C15/MPa327.9231 104.828880.835
    C16/K0.179516.2320.187
    C17/(s·MPa)-11.468×10-50.009 343.168×10-4
    C18/K0.5882 612.06229.848
    δ0/mm0.030.160.058 4
    δr0/mm0.001301.121
    ar1.012010.239
    ξr0.0012903.406
    νr1.000×10-42000.033 3
    δs0/mm0.0010.360.017 6
    as1.018080.011
    ξs0.0015043.767
    νs1.000×10-4800.025 6
    Fitness value2 165.292
    下载: 导出CSV

    表  3  模型预测数据的平均相对误差

    Table  3.   Relative error of constitutive model predictions

    Strain rate
    /s-1
    Temperature
    /K
    Relative error/%
    BCJ modelThis model
    4.0×10-42982.4681.626
    4.0×10-44073.9341.923
    0.012984.9522.266
    0.12983.3830.956
    12981.8612.042
    15426.4943.369
    5.2×1035429.9395.525
    6.0×1032986.7772.603
    下载: 导出CSV
  • [1] Manes A, Serpellini F, Pagani M, et al. Perforation and penetration of aluminium target plates by armour piercing bullets[J]. International Journal of Impact Engineering, 2014, 69(4):39-54. http://www.sciencedirect.com/science/article/pii/S0734743X14000499
    [2] 汤铁钢, 刘仓理.高应变率拉伸加载下无氧铜的本构模型[J].爆炸与冲击, 2013, 33(6):581-586. doi: 10.3969/j.issn.1001-1455.2013.06.004

    Tang Tiegang, Liu Cangli. On the constitutive model for oxygen-free high-conductivity copper under high strain-rate tension[J]. Explosion and Shock Waves, 2013, 33(6):581-586. doi: 10.3969/j.issn.1001-1455.2013.06.004
    [3] Zerilli F J, Armstrong R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations[J]. Journal of Applied Physics, 1987, 61(5):1816-1825. doi: 10.1063/1.338024
    [4] Huh H, Ahn K, Lim J H, et al. Evaluation of dynamic hardening models for BCC, FCC, and HCP metals at a wide range of strain rates[J]. Journal of Materials Processing Technology, 2014, 214(7):1326-1340. doi: 10.1016/j.jmatprotec.2014.02.004
    [5] Follansbee P S, Kocks U F. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable[J]. Acta Metallurgica, 1988, 36(1):81-93. doi: 10.1016/0001-6160(88)90030-2
    [6] Banerjee B. The mechanical threshold stress model for various tempers of AISI 4340 steel[J]. International Journal of Solids and Structures, 2007, 44(3/4):834-859. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_cond-mat%2f0510330
    [7] Bammann D J, Chiesa M L, Johnson G C. A state variable damage model for temperature and strain rate dependent metal[C]//Rajendran A M, Batra R C. Constitutive laws: Experiments and numerical implementation. Barcelona: International Center for Numerical Methods in Engineering (CIMNE), 1995: 84-97.
    [8] Tanner A B. Modeling temperature and strain rate history in effects in OFHU Cu[D]. Ann Arbor: Georgia Institute of Technology, 1998. http://www.researchgate.net/publication/252105952_Modeling_temperature_and_strain_rate_history_in_effects_in_OFHU_Cu
    [9] Molinari A, Ravichandran G. Constitutive modeling of high-strain-rate deformation in metals based on the evolution of an effective microstructural length[J]. Mechanics of Materials, 2005, 37(7):737-752. doi: 10.1016/j.mechmat.2004.07.005
    [10] Sevillano J G, van Houtte P, Aernoudt E. Large strain work hardening and textures[J]. Progress in Materials Science, 1980, 25(2):69-412. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0211046481/
    [11] Thompson A W. Substructure strengthening mechanisms[J]. Metallurgical Transactions: A, 1977, 8(6):833-842. doi: 10.1007/BF02661564
    [12] Ananthan V S, Leffers T, Hansen N, et al. Cell and band structures in cold rolled polycrystalline copper[J]. Materials Science and Technology, 1991, 7(12):1069-1075. doi: 10.1179/mst.1991.7.12.1069
    [13] Luo Z P, Zhang H W, Hansen N, et al. Quantification of the microstructures of high purity nickel subjected to dynamic plastic deformation[J]. Acta Materialia, 2012, 60(3):1322-1333. doi: 10.1016/j.actamat.2011.11.035
    [14] Staker M R, Holt D L. The dislocation cell size and dislocation density in copper deformed at temperatures between 25 and 700 ℃[J]. Acta Metallurgica, 1972, 20(4):569-579. doi: 10.1016/0001-6160(72)90012-0
    [15] Lee W S, Lin C F, Chen T H, et al. Dynamic mechanical behaviour and dislocation substructure evolution of Inconel 718 over wide temperature range[J]. Materials Science and Engineering: A, 2011, 528(19/20):6279-6286. http://www.sciencedirect.com/science/article/pii/S0921509311005223
    [16] Holt D L. Dislocation cell formation in metals[J]. Journal of Applied Physics, 1970, 41(8):3197-3201. doi: 10.1063/1.1659399
    [17] Huang M, Li Z, Tong J. The influence of dislocation climb on the mechanical behavior of polycrystals and grain size effect at elevated temperature[J]. International Journal of Plasticity, 2014, 61:112-127. doi: 10.1016/j.ijplas.2014.06.002
    [18] Devincre B, Hoc T, Kubin L. Dislocation Mean Free Paths and Strain Hardening of Crystals[J]. Science, 2008, 320(5884):1745-1748. doi: 10.1126/science.1156101
    [19] Kolupaeva S, Semenov M. The stored energy of plastic deformation in crystals of face-centered cubic metals[J]. IOP Conference Series: Materials Science and Engineering, 2015, 71(1):12-77. http://www.researchgate.net/publication/276237736_The_stored_energy_of_plastic_deformation_in_crystals_of_face-_centered_cubic_metals
    [20] Lee W S, Chen T H. Effects of strain rate and temperature on dynamic mechanical behaviour and microstructural evolution in aluminium-scandium (Al-Sc) alloy[J]. Materials Science and Technology, 2008, 24(10):1271-1282. doi: 10.1179/174328408X323078
    [21] 谭阳, 迟毅林, 黄亚宇, 等.Bammann-Chiesa-Johnsonn粘塑性本构模型材料参数的一种识别方法[J].计算力学学报, 2015(4):490-495. http://www.cjcm.net/ch/reader/view_abstract.aspx?file_no=20150408&flag=1

    Tan Yang, Chi Yilin, Huang Yayu, et al. An approach for identification of material parameters in Bammann-Chiesa-Johnson viscoplastic constitutive model[J]. Chinese Journal of Computational Mechanics, 2015(4):490-495. http://www.cjcm.net/ch/reader/view_abstract.aspx?file_no=20150408&flag=1
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  4149
  • HTML全文浏览量:  1201
  • PDF下载量:  384
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-09
  • 修回日期:  2016-10-08
  • 刊出日期:  2016-11-25

目录

    /

    返回文章
    返回