基于超高速相机的数字图像相关性全场应变分析在SHTB实验中的应用

申海艇 蒋招绣 王贝壳 李成华 王礼立 王永刚

申海艇, 蒋招绣, 王贝壳, 李成华, 王礼立, 王永刚. 基于超高速相机的数字图像相关性全场应变分析在SHTB实验中的应用[J]. 爆炸与冲击, 2017, 37(1): 15-20. doi: 10.11883/1001-1455(2017)01-0015-06
引用本文: 申海艇, 蒋招绣, 王贝壳, 李成华, 王礼立, 王永刚. 基于超高速相机的数字图像相关性全场应变分析在SHTB实验中的应用[J]. 爆炸与冲击, 2017, 37(1): 15-20. doi: 10.11883/1001-1455(2017)01-0015-06
Shen Haiting, Jiang Zhaoxiu, Wang Beike, Li Chenghua, Wang Lili, Wang Yonggang. Full field strain measurement in split Hopkinson tension bar experiments by using ultra-high-speed camera with digital image correlation[J]. Explosion And Shock Waves, 2017, 37(1): 15-20. doi: 10.11883/1001-1455(2017)01-0015-06
Citation: Shen Haiting, Jiang Zhaoxiu, Wang Beike, Li Chenghua, Wang Lili, Wang Yonggang. Full field strain measurement in split Hopkinson tension bar experiments by using ultra-high-speed camera with digital image correlation[J]. Explosion And Shock Waves, 2017, 37(1): 15-20. doi: 10.11883/1001-1455(2017)01-0015-06

基于超高速相机的数字图像相关性全场应变分析在SHTB实验中的应用

doi: 10.11883/1001-1455(2017)01-0015-06
基金项目: 

国家自然科学基金项目 11472142

国家自然科学基金项目 11272164

详细信息
    作者简介:

    申海艇(1989—),男,硕士研究生

    通讯作者:

    王永刚,wangyonggang@nbu.edu.cn

  • 中图分类号: O347.3

Full field strain measurement in split Hopkinson tension bar experiments by using ultra-high-speed camera with digital image correlation

  • 摘要: 基于超高速相机和数字图像相关性全场应变分析方法对传统的分离式Hopkinson拉杆(SHTB)实验系统进行改进,获得尼龙和铝合金材料的动态拉伸应力应变曲线,验证了数字图像相关性全场应变分析在SHTB实验中的有效性。实验结果显示:该方法测量的平均应变与应变片测量结果一致性很好, 而传统的SHTB实验原理计算的应变结果则明显偏大,需要对试件原始标距进行修正后才能获得有效的试件应变,并且在试件的材料和几何尺寸不变的条件下标距修正不依赖于应变率。基于数字图像相关性全场应变测量,讨论了应变均匀性问题:脆性的尼龙试件在标距范围内应变均匀性良好,而韧性的铝合金试件表现出比较严重的应变不均匀性,归因于颈缩变形的影响。
  • 图  1  SHTB实验装置示意图

    Figure  1.  Schematics of SHTB system

    图  2  典型的试件散斑照片

    Figure  2.  Typical speckle image of specimen

    图  3  DIC应变测量误差评估

    Figure  3.  Error assessment of DIC strain measurement

    图  4  动态拉伸试件

    Figure  4.  Dynamic tensile specimen

    图  5  2种应变率下不同方法获得的尼龙试件应变时程的对比

    Figure  5.  Comparison of strain profiles obtained by different calculation methods at different strain rates

    图  6  2种应变率下不同方法获得的铝合金试件应变时程的对比

    Figure  6.  Comparison of different strain rate profiles obtained by different methods at different strain rates

    图  7  不同时刻试件应变在标距段内的分布图

    Figure  7.  Progression of strain distribution along gauge length of specimen

    图  8  2种应变率下尼龙和铝合金材料动态拉伸应力应变曲线

    Figure  8.  Dynamic tensile stress-strain curves of nylon and aluminum at different strain rates

  • [1] Kolsky H. An investigation of the mechanical properties of materials at very high rates of loading loading[J]. Proceedings of the Physical Society. Section B, 1949, 62(11):676-700. doi: 10.1088/0370-1301/62/11/302
    [2] Chen W, Song B. Split Hopkinson (Kolsky) bar: Design, testing and application[M]. New York: Springer, 2011.
    [3] 胡时胜, 王礼立, 宋力, 等.Hopkinson压杆技术在中国的发展回顾[J].爆炸与冲击, 2014, 34(6):641-657. http://d.old.wanfangdata.com.cn/Periodical/bzycj201406001

    Hu Shisheng, Wang Lili, Song Li, et al. Review of the development of Hopkinson pressure bar technique in China[J]. Explosion and Shock Waves, 2014, 34(6):614-657. http://d.old.wanfangdata.com.cn/Periodical/bzycj201406001
    [4] Owens A T, Tippur H V. A tensile split Hopkinson bar for testing particulate polymer composites under elevated rates of loading[J]. Experimental Mechanics, 2009, 49(6):799-811. doi: 10.1007/s11340-008-9192-7
    [5] Gerlach R, Kettenbeil C, Petrinic N. A new split Hopkinson tensile bar design[J]. International Journal of Impact Engineering, 2012, 50(12):63-67. http://www.sciencedirect.com/science/article/pii/S0734743X1200156X
    [6] 田宏伟, 郭伟国.动态拉伸试验中试样应变测试的有效性分析[J].实验力学, 2008, 23(5):403-410. http://d.old.wanfangdata.com.cn/Periodical/sylx200805004

    Tian Hongwei, Guo Weiguo. Validity analysis of sample strain measurement in dynamic tensile experiment[J]. Journal of Experimental Mechanics, 2008, 23(5):403-410. http://d.old.wanfangdata.com.cn/Periodical/sylx200805004
    [7] 赵磊, 李玉龙, 陈煊.一种绸布的冲击拉伸性能实验[J].爆炸与冲击, 2014, 34(4):476-482. http://www.bzycj.cn/CN/abstract/abstract8893.shtml

    Zhao Lei, Li Yulong, Chen Xuan. Experimental study on dynamic tensile behavior of a kind of fiber silk[J]. Explosion and Shock Waves, 2014, 34(4):476-482. http://www.bzycj.cn/CN/abstract/abstract8893.shtml
    [8] 胡时胜, 邓德涛, 任小彬.材料冲击拉伸实验的若干问题探讨[J].实验力学, 1998, 13(1):9-14. http://d.old.wanfangdata.com.cn/Conference/6471516

    Hu Shisheng, Deng Detao, Ren Xiaobin. A study on impact tensile test of materials[J]. Journal of Experimental Mechanics, 1998, 13(1):9-14. http://d.old.wanfangdata.com.cn/Conference/6471516
    [9] Sutton M A, Orteu J J, Schreier H. Image correlation for shape, motion and deformation measurements: Basic concepts, theory and applicants[M]. New York: Springer, 2009. https://www.researchgate.net/publication/283374652_Introduction
    [10] Pierron F, Sutton M A, Tiwari V. Ultra high speed DIC and virtual fields method analysis of a three point bending impact test on an aluminum bar[J]. Experimental Mechanics, 2011, 51(4):537-563. doi: 10.1007/s11340-010-9402-y
    [11] Liu J G, Saletti D, Pattofatto S, et al. Impact testing of polymeric foam using Hopkinson bars and digital image analysis[J]. Polymer Testing, 2014, 36(6):101-109. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d70f16a91e7e6ce9f7f3cd7f4d1eeae9
  • 加载中
图(8)
计量
  • 文章访问数:  4806
  • HTML全文浏览量:  1609
  • PDF下载量:  613
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-19
  • 修回日期:  2015-10-27
  • 刊出日期:  2017-01-25

目录

    /

    返回文章
    返回