方孔障碍物对瓦斯火焰传播影响的实验与大涡模拟

陈鹏 李艳超 黄福军 张玉涛

陈鹏, 李艳超, 黄福军, 张玉涛. 方孔障碍物对瓦斯火焰传播影响的实验与大涡模拟[J]. 爆炸与冲击, 2017, 37(1): 1-9. doi: 10.11883/1001-1455(2017)01-0021-06
引用本文: 陈鹏, 李艳超, 黄福军, 张玉涛. 方孔障碍物对瓦斯火焰传播影响的实验与大涡模拟[J]. 爆炸与冲击, 2017, 37(1): 1-9. doi: 10.11883/1001-1455(2017)01-0021-06
Chen Peng, Li Yanchao, Huang Fujun, Zhang Yutao. LES approach to premixed methane/air flame propagating in the closed duct with a square-hole obstacle[J]. Explosion And Shock Waves, 2017, 37(1): 1-9. doi: 10.11883/1001-1455(2017)01-0021-06
Citation: Chen Peng, Li Yanchao, Huang Fujun, Zhang Yutao. LES approach to premixed methane/air flame propagating in the closed duct with a square-hole obstacle[J]. Explosion And Shock Waves, 2017, 37(1): 1-9. doi: 10.11883/1001-1455(2017)01-0021-06

方孔障碍物对瓦斯火焰传播影响的实验与大涡模拟

doi: 10.11883/1001-1455(2017)01-0021-06
基金项目: 

国家自然科学基金项目 51274205

煤炭资源与安全开采国家重点实验室开放课题项目 SKLCRSM10KFB13

详细信息
    作者简介:

    陈鹏(1971—),男,博士,副教授,chenpeng@cumtb.edu.cn

  • 中图分类号: O381;TD712

LES approach to premixed methane/air flame propagating in the closed duct with a square-hole obstacle

  • 摘要: 为揭示置障管道内甲烷/空气预混火焰传播特性,运用高速摄影技术对甲烷/空气预混火焰的形状变化和火焰前锋的速度特性进行实验,并利用大涡模拟对管道内的流场结构进行数值分析。结果表明:置障管道内依次出现了球形火焰、指尖形火焰及“蘑菇”状火焰,且“蘑菇”状火焰出现之后,火焰开始反向传播;“蘑菇”状火焰是双涡旋结构与火焰前锋面相互作用的结果,而火焰的反向传播是由流场中出现逆流结构引起的;障碍物对火焰前锋有明显的加速作用;大涡模拟成功再现了实验中观察到的火焰形状、火焰前锋速度及流场结构,说明大涡模拟适用于置障管道内预混火焰传播特性的研究。
  • 图  1  实验系统示意图

    Figure  1.  Sketch of experimental system

    图  2  置障管道内甲烷/空气预混火焰传播的高速摄影图像

    Figure  2.  Sequences of high-speed images of premixed methane/air flame propagating in an obstructed duct

    图  3  甲烷/空气预混火焰传播的大涡模拟

    Figure  3.  Large eddy simulation of premixed methane/air flame propagating in obstructed duct

    图  4  置障管道内甲烷/空气预混燃烧的流场结构

    Figure  4.  Flow field of premixed methane/air flame propagating in an obstructed duct

    图  5  火焰前锋位置随时间的变化特性

    Figure  5.  Histories of flame front surface position

    图  6  火焰前锋速度随时间的变化特性

    Figure  6.  Histories of flame front surface velocity

  • [1] Dorofeev S B. Flame acceleration and explosion safety applications[J]. Proceedings of the Combustion Institute, 2011, 33(2):2161-2175. doi: 10.1016/j.proci.2010.09.008
    [2] Alharbi A, Masri A R, Ibrahim S S. Turbulent premixed flames of CNG, LPG, and H2 propagating past repeated obstacles[J]. Experimental Thermal and Fluid Science, 2014, 56(7):2-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cab80255e3dd2ac1e24881d2a44ea68e
    [3] Johansen C T, Ciccarelli G. Modeling the initial flame acceleration in an obstructed channel using large eddy simulation[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(4):571-585. doi: 10.1016/j.jlp.2012.12.005
    [4] 陈志华, 叶经方, 范宝春, 等.方形管内楔形障碍物对火焰结构与传播的影响[J]. 爆炸与冲击, 2006, 26(3):208-213. doi: 10.3321/j.issn:1001-1455.2006.03.003

    Chen Zhihua, Ye Jingfang, Fan Baochun, et al. Effects of a wedge obstacle on flame propagation and its structure[J]. Explosion and Shock Waves, 2006, 26(3):208-213. doi: 10.3321/j.issn:1001-1455.2006.03.003
    [5] Ciccarelli G, Dorofeev S. Flame acceleration and transition to detonation in ducts[J]. Progress in Energy & Combustion Science, 2008, 34(4):499-550. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=718edb9b92782b6bc9b5758162d9bbdb
    [6] Kundu S, Zanganeh J, Moghtaderi B. A review on understanding explosions from methane-air mixture[J]. Journal of Loss Prevention in the Process Industries, 2016(40):507-523. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bd0c31f6cbd2e040995370fc181d2079
    [7] Masri A R, Ibrahim S S, Nehzat N, et al. Experimental study of premixed flame propagation over various solid obstructions[J]. Experimental Thermal and Fluid Science, 2000, 21(1/2/3):109-116. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ff5b56c451e0a34d392f7a4e791e637b
    [8] Hall R, Masri A R, Yaroshchyk P, et al. Effects of position and frequency of obstacles on turbulent premixed propagating flames[J]. Combustion and Flame, 2009, 156(2):439-446. doi: 10.1016/j.combustflame.2008.08.002
    [9] Chen P, Li Y C, Huang F J, et al. Experimental and LES investigation of premixed methane/air flame propagating in a chamber for three obstacle BR configurations[J]. Journal of Loss Prevention in the Process Industries, 2016, 41(5):48-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a21f326d49cd196d10940be6b2b2ce86
    [10] Wen X P, Yu M G, Liu Z C, et al. Large eddy simulation of methane-air deflagration in an obstructed chamber using different combustion models[J]. Journal of Loss Prevention in the Process Industries, 2012, 25(25):730-738. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=01e1b3eb9b77325460e27f3d572d02aa
    [11] Johansen C T, Ciccarelli G. Visualization of the unburned gas flow field ahead of an accelerating flame in an obstructed square channel[J]. Combustion and Flame, 2009, 156(2):405-416. doi: 10.1016/j.combustflame.2008.07.010
    [12] Sarli V D, Benedetto A D, Russo G, et al. Large eddy simulation and PIV measurements of unsteady flames accelerated by obstacles[J]. Flow Turbulence and Combustion, 2009, 83(2):227-250. doi: 10.1007/s10494-008-9198-3
    [13] Sarli V D, Benedetto A D, Russo G. Sub-grid scale combustion models for large eddy simulation of unsteady premixed flame propagation around obstacles[J]. Journal of Hazardous Materials, 2010, 180(1/2/3):71-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8e2c1f3fb6857178dce5a963fa5e1fac
    [14] Ibrahim S S, Gubba S R, Malalasekera W, et al. Calculations of explosion deflagration flames using a dynamic flame surface density model[J]. Combustion, Explosion, and Shock Waves, 2012, 48(4):393-405. doi: 10.1134/S0010508212040041
    [15] 马秋菊, 张奇, 庞磊.巷道壁面与瓦斯爆炸相互作用的数值模拟[J]. 爆炸与冲击, 2014, 34(1):23-27. doi: 10.3969/j.issn.1001-1455.2014.01.005

    Ma Qiuju, Zhang Qi, Pang Lei. Numerical simulation on interaction between laneway surface and methane explosion[J]. Explosion and Shock Waves, 2014, 34(1):23-27. doi: 10.3969/j.issn.1001-1455.2014.01.005
    [16] Gubba S R, Ibrahim S S, Malalasekera W, et al. Measurements and LES calculations of turbulent premixed flame propagation past repeated obstacles[J]. Combustion and Flame, 2011, 158(12):2465-2481. doi: 10.1016/j.combustflame.2011.05.008
    [17] Zimont V L, Battaglia V. Joint RANS/LES approach to premixed flame modelling in the context of the TFC combustion model[J]. Flow Turbulence and Combustion, 2006, 77(1):305-331. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dc0a05d36d25fa51a6a6e96a1f6b0ad9
  • 加载中
图(6)
计量
  • 文章访问数:  4853
  • HTML全文浏览量:  1662
  • PDF下载量:  513
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-20
  • 修回日期:  2015-08-25
  • 刊出日期:  2017-01-25

目录

    /

    返回文章
    返回