JBO-9021炸药的化学反应区宽度

张涛 谷岩 赵继波 刘雨生 伍星

张涛, 谷岩, 赵继波, 刘雨生, 伍星. JBO-9021炸药的化学反应区宽度[J]. 爆炸与冲击, 2017, 37(3): 415-421. doi: 10.11883/1001-1455(2017)03-0415-07
引用本文: 张涛, 谷岩, 赵继波, 刘雨生, 伍星. JBO-9021炸药的化学反应区宽度[J]. 爆炸与冲击, 2017, 37(3): 415-421. doi: 10.11883/1001-1455(2017)03-0415-07
Zhang Tao, Gu Yan, Zhao Jibo, Liu Yusheng, Wu Xing. Chemical reaction zone length of JBO-9021[J]. Explosion And Shock Waves, 2017, 37(3): 415-421. doi: 10.11883/1001-1455(2017)03-0415-07
Citation: Zhang Tao, Gu Yan, Zhao Jibo, Liu Yusheng, Wu Xing. Chemical reaction zone length of JBO-9021[J]. Explosion And Shock Waves, 2017, 37(3): 415-421. doi: 10.11883/1001-1455(2017)03-0415-07

JBO-9021炸药的化学反应区宽度

doi: 10.11883/1001-1455(2017)03-0415-07
详细信息
    作者简介:

    张涛(1988—),男,硕士

    通讯作者:

    谷岩,guyan@caep.cn

  • 中图分类号: O381

Chemical reaction zone length of JBO-9021

  • 摘要: 采用激光干涉测试技术和楔形炸药构型, 对新型钝感高能炸药JBO-9021的爆轰反应区宽度进行了实验研究。实验中在楔形JBO-9021炸药后加镀膜LiF晶体作为测试窗口, 测试受试炸药与测试窗口界面的粒子速度剖面。将粒子速度剖面对时间进行二阶求导, 通过粒子速度剖面的二阶求导曲线上等于零的时刻判读CJ点的时刻, 从而得到化学反应区宽度。研究结果表明, 新型钝感高能炸药JBO-9021的化学反应持续时间为(238±13) ns, 相应的化学反应区宽度为(1.52±0.09) mm。
  • 图  1  实验装置及测试系统图

    Figure  1.  Sketch of experimental facility and measuring system

    图  2  实验装置

    Figure  2.  Sketch of experimental facility for studying reaction zone of JBO-9021 explosive

    图  3  受试炸药与LiF窗口界面粒子速度随时间的变化曲线

    Figure  3.  Particle velocity-time curves at the interface between JBO-9021 explosive and LiF window

    图  4  修正后的受试炸药与LiF窗口界面粒子速度随时间的变化曲线

    Figure  4.  Amended particle velocity-time curves at the interface between JBO-9021 explosive and LiF window

    图  5  平滑后的受试炸药与LiF窗口界面粒子加速度斜率随时间的变化曲线

    Figure  5.  Smoothed derivative of acceleration to time-time curves at the interface between JBO-9021 explosive and LiF window

    表  1  不同探针处测得的JBO-9021炸药化学反应区宽度

    Table  1.   Lengths of reaction zone for JBO-9021 explosive at different points

    炸药 探针编号 up/(km·s-1) τ/μs a/mm
    JBO-9021 1# 1.431 0.241 1.55
    JBO-9021 2# 1.477 0.228 1.46
    JBO-9021 3# 1.441 0.251 1.61
    JBO-9021 4# 1.499 0.231 1.47
    PBX-9502 2[17]
    PBX-9502 2.1[19]
    LX-9 2[18]
    下载: 导出CSV
  • [1] Armstrong M R, Crowhurst J C, Bastea S, et al. Observation of off-hugoniot shocked states with ultrafast time resolution[C]//Proceedings of the 14th International Detonation Symposium. Albuquerque: Sandia National Laboratory, 2010: 366-373.
    [2] Mattsson A E, Wixom R R, Mattsson T R. Calculating hugoniots for molecular crystals from first principles[C]//Proceedings of the 14th International Detonation Symposium. Albuquerque: Sandia National Laboratory, 2010: 537-544.
    [3] 黄奎邦, 陈永丽, 于鑫, 等.JB-9014炸药的化学反应率参数及应用研究[J].爆炸与冲击, 2013, 33(增):140-144. http://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ2013S1025.htm

    Huang Kuibang, Chen Yongli, Yu Xin, et al. Parameters and application research of reaction rate for JB-9014 explosive[J]. Explosion and Shock Waves, 2013, 33(suppl):140-144. http://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ2013S1025.htm
    [4] Bouyer V, Doucet M, Decaris L. Experimental measurements of the detonation wave profile in a TATB based explosive[C]//EPJ Web of Conferences 10. DOI: 10.1051/epjconf/20101000030.
    [5] Tarver C M. Detonation reaction zones in condensed explosives[J]. Aip Conference Proceedings, 2005, 845(1):1026-1029. http://digital.library.unt.edu/ark:/67531/metadc885771/
    [6] Hansen J S, Nowakowski B, Lemarchand A. Molecular-dynamics simulations and master-equation description of a chemical wave front: Effects of density and size of reaction zone on propagation speed[J]. Journal of Chemical Physics, 2006, 124(3):034503. doi: 10.1063/1.2161209
    [7] Pulham C R, Millar D I A, Oswald I D H, et al. Pressure-cooking of explosives: The crystal structure of a high-pressure, high-temperature form of RDX as determined by X-ray and neutron diffraction[C]//Proceedings of the 14th International Detonation Symposium. Albuquerque: Sandia National Laboratory, 2010: 395-400.
    [8] Bouyer V, Hebert P, Doucet M, et al. Experimental measurements of the chemical reaction zone of TATB and HMX based explosives[C]//Biennial International Conference of the Aps Topical Group on Shock Compression of Condensed Matter. 2012, 1426(1): 209-212.
    [9] Bouyer V, Sheffield S A, Dattelbaum D M, et al. Experimental measurements of the chemical reaction zone of detonating liquid explosives[C]//16th APS Topical Conference on Shock Compression of Condensed Matter. The American Physical Society, 2009, 54(8): 177-180.
    [10] Utkin A V, Mochalova V M, Zav'yalov V S, et al. Influence of powder dispersion on the reaction zone structure for pressed RDX and HMX[C]//Proceedings of the 14th International Detonation Symposium. Albuquerque: Sandia National Laboratory, 2010: 194-198.
    [11] Plaksin I, Rodrigues L, Plaksin S, et al. Effect of the reaction light absorption on the formation of the detonation reaction zone 3D-structure in PBXs[C]//Proceedings of the 14th International Detonation Symposium. Albuquerque: Sandia National Laboratory, 2010: 241-250.
    [12] Engelke R, Sheffield S A, Stacy H L. Chemical-reaction-zone lengths in condensed-phase explosives[J]. Physics of Fluids, 2004, 16(11):4143-4149. doi: 10.1063/1.1804552
    [13] Jensen B J, Holtkamp D B, Rigg P A, et al. Accuracy limits and window corrections for photon Doppler velocimetry[J]. Journal of Applied Physics, 2007, 101(1):013523-013523-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=78866ffa12d40d8d8d2419579d334ddb
    [14] LaLone B M, Fat'yanov O V, Asay J R, et al. Velocity correction and refractive index changes for[100] lithium fluoride opticalwindows under shock compression, recompression, and unloading[J]. Journal of Applied Physics, 2008, 103(9):093505-093505-7. doi: 10.1063/1.2912500
    [15] Mader C L. Numerical modeling of detonation[M]. Berkely, California: University of California Press, 1979:48.
    [16] Carter W J. Hugoniot equation of state of some alkali halides[J]. High Temperatures-High Pressures, 1973, 5(3):313-318.
    [17] Seitz W L, Stacy H L, Engelke R, et al. Detonation reaction-zone structure of PBX-9502[C]//Proceedings of the Ninth International Detonation Symposium. Albuquerque: Sandia National Laboratory, 1989: 675.
    [18] Tarver C M, Breithaupt R D, Kury J W. Current experimental and theoretical understanding of detonation waves in heterogeneous solid explosives[C]//Proceedings of the Eighth International Detonation Symposium. Albuquerque: Sandia National Laboratory, 1985: 692.
    [19] Sheffield S A, Bloomquist D D, Tarver C M. Subnanosecond measurements of detonation fronts in solid high explosives[J]. Journal of Chemical Physics, 1984, 80(8):3831-3844. doi: 10.1063/1.447164
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  4305
  • HTML全文浏览量:  1365
  • PDF下载量:  346
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-17
  • 修回日期:  2015-10-21
  • 刊出日期:  2017-05-25

目录

    /

    返回文章
    返回