纵向冲击压缩下LY12铝合金圆环的塑性失稳

施春英 徐松林 单俊芳 王鹏飞 胡时胜

施春英, 徐松林, 单俊芳, 王鹏飞, 胡时胜. 纵向冲击压缩下LY12铝合金圆环的塑性失稳[J]. 爆炸与冲击, 2017, 37(3): 471-478. doi: 10.11883/1001-1455(2017)03-0471-08
引用本文: 施春英, 徐松林, 单俊芳, 王鹏飞, 胡时胜. 纵向冲击压缩下LY12铝合金圆环的塑性失稳[J]. 爆炸与冲击, 2017, 37(3): 471-478. doi: 10.11883/1001-1455(2017)03-0471-08
Shi Chunying, Xu Songlin, Shan Junfang, Wang Pengfei, Hu Shisheng. Plastic instability of LY12 aluminum alloy ring under longitudinal impact compression[J]. Explosion And Shock Waves, 2017, 37(3): 471-478. doi: 10.11883/1001-1455(2017)03-0471-08
Citation: Shi Chunying, Xu Songlin, Shan Junfang, Wang Pengfei, Hu Shisheng. Plastic instability of LY12 aluminum alloy ring under longitudinal impact compression[J]. Explosion And Shock Waves, 2017, 37(3): 471-478. doi: 10.11883/1001-1455(2017)03-0471-08

纵向冲击压缩下LY12铝合金圆环的塑性失稳

doi: 10.11883/1001-1455(2017)03-0471-08
基金项目: 

国家自然科学基金项目 11272304

国家自然科学基金项目 11472264

详细信息
    作者简介:

    施春英(1991-),女,硕士研究生

    通讯作者:

    徐松林,slxu99@ustc.edu.cn

  • 中图分类号: O347

Plastic instability of LY12 aluminum alloy ring under longitudinal impact compression

  • 摘要: 通过对铝合金圆环的纵向冲击压缩研究发现,一定条件下在试件的宏观塑性硬化阶段会出现明显的应力降过程。为揭示此应力降的发生机制,对润滑、细磨、粗磨3种端面粗糙条件下,外径、内径和高度比值为6:3:2的LY12铝合金圆环进行系统的Hopkinson压杆纵向冲击实验。结果表明:应力降主要发生在较大的应变和较高的应变率条件。进一步对实验样品的金相观察发现:应力降产生的内在机制为绝热剪切带的形成和发展,此现象是一种动态塑性失稳的过程。以上结果为金属材料在冲击条件下绝热剪切带产生的研究提供了参考。
  • 图  1  SHPB实验装置示意图

    Figure  1.  Schematic diagram of SHPB device

    图  2  典型测试波形

    Figure  2.  Typical recorded wave profiles

    图  3  原始试件和3种端面粗糙条件下动态压缩试件的对比

    Figure  3.  Comparison of surfaces of initial specimen and recovery specimens with three roughness conditions

    图  4  不同端面摩擦条件下的圆环压缩过程

    Figure  4.  Compression processes of rings under different roughness conditions

    图  5  原始试件和3种应变率下动态压缩试件的对比

    Figure  5.  Comparison of original and dynamic compression specimens at three strain rates

    图  6  不同应变率下圆环压缩应力-应变曲线

    Figure  6.  Stress-strain curves of rings at different strain rates

    图  7  圆环金相观察位置

    Figure  7.  Metallographic observation position of ring

    图  8  3种端面摩擦条件下的圆环金相

    Figure  8.  Metallography of rings under three roughness conditions

    图  9  临界应变率条件下圆环试件的金相

    Figure  9.  Metallographic phase of ring at critical strain rate

    图  10  冲击后圆环试件内部剪切带所在位置和内表面的金相图

    Figure  10.  Position of shear zone and metallography of inner surface of ring

  • [1] Avitzur B.Forging of hollow disk[J].Israel Journal of Technology, 1964, 2(3):295-304.
    [2] Hill R.The mathematical theory of plasticity[M].Oxford:Oxford University Press, 1950.
    [3] Male A T, Depierre V.The validity of mathematical solutions for determining friction from the ring compression test[J].Journal of Tribology, 1970, 92(3):389. doi: 10.1115-1.3451419/
    [4] Male A T, Cockcroft M G.A method for the determination of the coefficient of friction of metals under conditions of bulk plastic deformation[J].Journal of the Institute of Metals, 1964, 93:38-46. http://cn.bing.com/academic/profile?id=dcc4dfaf7e38bf5041e155e592f3b877&encoded=0&v=paper_preview&mkt=zh-cn
    [5] Hartley R S, Cloete T J, Nurick G N.An experimental assessment of friction effects in the split Hopkinson pressure bar using the ring compression test[J].International Journal of Impact Engineering, 2007, 34(10):1705-1728. doi: 10.1016/j.ijimpeng.2006.09.003
    [6] Alves M, Karagiozova D, Micheli G B, et al.Limiting the influence of friction on the split Hopkinson pressure bar tests by using a ring specimen[J].International Journal of Impact Engineering, 2012, 49(6):130-141. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=453b3b533be09d4a906e27b52a4eda8b
    [7] Song B, Chen W, Ge Y, et al.Dynamic and quasi-static compressive response of porcine muscle.[J].Journal of Biomechanics, 2007, 40(13):2999-3005. doi: 10.1016/j.jbiomech.2007.02.001
    [8] 杨茨, 徐松林, 易洪昇.冲击载荷下圆环纵向压缩力学行为研究[J].实验力学, 2014, 29(1):18-25. http://d.old.wanfangdata.com.cn/Periodical/sylx201401003

    Yang Ci, Xu Songlin, Yi Hongsheng.Research on mechanical behaviors of ring under longitudinal impact load[J].Journal of Experimental Mechanics, 2014, 29(1):18-25. http://d.old.wanfangdata.com.cn/Periodical/sylx201401003
    [9] 杨茨, 徐松林, 易洪昇.冲击载荷下圆环压缩变形特性研究[J].振动与冲击, 2015, 34(11):128-132. http://d.old.wanfangdata.com.cn/Periodical/zdycj201511023

    Yang Ci, Xu Songlin, Yi Hongsheng.Research on deformation properties of ring under longitudinal impact load[J].Vibration and Impact, 2015, 34(11):128-132. http://d.old.wanfangdata.com.cn/Periodical/zdycj201511023
    [10] Liu G, Wang L L, Liu Z Q, et al.Compressive formability of 7075 aluminum alloy rings under hydrostatic pressure[J].Transactions of Nonferrous Metals Society of China, 2006, 16(5):1103-1109. doi: 10.1016/S1003-6326(06)60385-3
    [11] 胡忠, 朱利华, 李家庆.圆环压缩过程的有限元模拟:一种标定摩擦系数理论曲线的新方法[J].金属学报, 1997, 33(4):337-344. doi: 10.3321/j.issn:0412-1961.1997.04.001

    Hu Zhong, Zhu Lihua, Li Jiaqing.Simulation of ring compression by FEM:A new way to calibrate theoretical curves of friction coefficient[J].Acta Metallurgica Sinica, 1997, 33(4):337-344. doi: 10.3321/j.issn:0412-1961.1997.04.001
    [12] 卢维娴, 王礼立, 陆在庆.β-Ti合金在高应变率下的绝热剪切现象[J].金属学报, 1986, 22(4):39-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000292568

    Lu Weixian, Wang Lili, Lu Zaiqing.Adiabatic shearing phenomenon of β-Ti alloy at high strain rates[J].Acta Metallurgica Sinica, 1986, 22(4):39-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000292568
    [13] 徐天平, 王礼立, 卢维娴.高应变率下钛合金Ti-6Al-4V的热-粘塑性特性和绝热剪切变形[J].爆炸与冲击, 1987, 7(1):1-8. http://www.bzycj.cn/CN/abstract/abstract10977.shtml

    Xu Tianping, Wang Lili, Lu Weixian.The thermo-viscoplasticity and adiabatic shear deformation for a titanium alloy Ti-6Al-4V under high strain rates[J].Explosion and Shock Waves, 1987, 7(1):1-8. http://www.bzycj.cn/CN/abstract/abstract10977.shtml
    [14] 尹嘉明, 李伯龙, 韩鹏, 等.动态压缩下5A06铝合金剪切变形局部化[J].科学技术与工程, 2012, 12(17):4119-4123. doi: 10.3969/j.issn.1671-1815.2012.17.015

    Yin Jiaming, Li Bolong, Han Peng, et al.Shear localization deformation in 5A05 aluminum alloy during compressive deformation[J].Science Technology and Engineering, 2012, 12(17):4119-4123. doi: 10.3969/j.issn.1671-1815.2012.17.015
    [15] 尚兵, 胡时胜, 王虎.0Cr17Mn5Ni4Mo3Al不锈钢绝热剪切破坏分析[J].实验力学, 2008, 23(4):339-344. http://d.old.wanfangdata.com.cn/Periodical/sylx200804008

    Shang Bing, Hu Shisheng, Wang Hu.Analysis of adiabatic shear band failure of 0Cr17Mn5Ni4Mo3Al stainless steel[J].Journal of Experimental Mechanics, 2008, 23(4):339-344. http://d.old.wanfangdata.com.cn/Periodical/sylx200804008
    [16] 魏志刚, 李永池, 李剑荣, 等.冲击载荷作用下钨合金材料绝热剪切带形成机理[J].金属学报, 2000, 36(12):1263-1268. doi: 10.3321/j.issn:0412-1961.2000.12.008

    Wei Zhigang, Li Yongchi, Li Jianrong, et al.Formation mechanism of adiabatic shear band in tungsten heavy alloys[J].Acta Metallurgica Sinica, 2000, 36(12):1263-1268. doi: 10.3321/j.issn:0412-1961.2000.12.008
    [17] 徐永波, 白以龙.动态载荷下剪切变形局部化、微结构演化与剪切断裂研究进展[J].力学进展, 2007, 37(4):496-516. doi: 10.3321/j.issn:1000-0992.2007.04.002

    Xu Yongbo, Bai Yilong.Shear localization, microstructure evolution and fracture under high-strain rate[J].Advances in Mechanics, 2007, 37(4):496-516. doi: 10.3321/j.issn:1000-0992.2007.04.002
    [18] Bai Y L.Thermo-plastic instability in simple shear[J].Journal of the Mechanics and Physics of Solids, 1982, 30(4):195-207. doi: 10.1016/0022-5096(82)90029-1
    [19] Xu Y B, Zhong W L, Chen Y J, et al.Shear localization and recrystallization in dynamic deformation of 8090 Al-Li alloy[J].Materials Science and Engineering A, 2001, 299(1/2):287-295. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d1a95e60e96bd1849977ba8ff9929746
    [20] Xu Y B, Yu J Q, Shen L T, et al.Thermoplastic shear localization in titanium alloys[J].Materials Science and Technology, 2000, 19:609-611. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1444a11a2ae33338e2eff70cbd0e84a8
  • 加载中
图(10)
计量
  • 文章访问数:  3781
  • HTML全文浏览量:  180
  • PDF下载量:  512
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-16
  • 修回日期:  2016-04-29
  • 刊出日期:  2017-05-25

目录

    /

    返回文章
    返回