Full moment tensor inversion method of underground nuclear explosionsbased on surface waves data
-
摘要: 区域分层介质模型下, 可以将地震波场描述为矩张量各分量作为权重的基本格林函数的线性组合,利用该理论地震波场可以反演实际天然地震或地下核爆炸的震源机制,反演结果中不同震源机制成分的比重,可以用来识别地下核爆炸,该系统方法越来越受到关注。给出了基于广义反射-透射系数方法的水平分层介质模型的地震波场正演公式,并对基于该公式的单台反演结果的准确性、稳定性、可靠性进行了理论分析,为利用该公式对实际地下核爆炸进行反演提供了理论基础,该方法对利用区域少量甚至是单站记录数据检测、识别地下核爆炸具有重要参考意义。
-
关键词:
- 地下核爆炸 /
- 面波 /
- 格林函数 /
- 全元素矩张量反演方法 /
- 补偿线性偶极矢量源
Abstract: Powerful techniques have been developed for calculating the plane wave response of horizontally layered models. This method is quite general and is widely used in synthetic wave algorithms. Using this method, we can describe the displacements in terms of a linear combination of the moment tensor elements, and the moment tensor for an arbitrarily oriented dislocation can be given by this method. The moment tensor can be used to distinguish natural earthquakes and underground nuclear experiments according to its different elements. In this paper we rewrite the formula and estimate the reliability of the non-double-couple solutions on the basis of error analysis that includes the variance of modeling and of the noise in the data. Our analysis of synthetic data shows that this method is robust and can be used in the real data analyses. The result is significant for monitoring nuclear explosions by using data from just a few monitoring stations or even from a single station. -
表 1 理论地壳模型
Table 1. Theoretical crustal model
d/km ρ/(g·cm-3) vS/(km·s-1) vP/(km·s-1) QS QP 0 2.700 2.790 5.020 100.00 2 000.0 2.000 2.700 3.000 5.400 150.00 2 000.0 3.000 2.700 3.300 5.900 200.00 2 000.0 5.488 2.700 3.400 6.100 600.00 2 000.0 16.464 2.702 3.541 6.308 525.00 2 000.0 21.952 2.807 3.703 6.597 500.00 2 000.0 27.440 2.858 3.781 6.736 450.00 2 000.0 32.928 2.875 3.807 6.782 400.00 2 000.0 38.492 2.879 3.814 6.795 350.00 2 000.0 44.996 3.372 4.573 8.147 179.00 2 000.0 表 2 不同深度下的方差缩减
Table 2. Variance reduction at different source depths
源 RV/% 8.0 km 8.5 km 9.0 km 9.5 km 10.0 km 10.5 km 11.0 km 11.5 km 12.0 km EXP 61.57 79.27 88.57 94.55 100 94.62 89.37 81.63 65.87 CLVD 65.11 82.73 90.46 95.35 100 95.66 90.69 83.64 67.94 DC 60.36 77.66 85.32 91.65 100 92.32 86.69 79.72 63.15 X 59.79 75.82 83.97 90.22 100 90.38 84.20 76.15 61.22 -
[1] Stump B W, Johnson L R. The determination of source properties by the linear inversion of seismograms[J]. Bulletin of the Seismological Society of America, 1977, 67(6):1489-1502. http://cn.bing.com/academic/profile?id=19ac4c3ca3ae47c4388d74c683ceed8b&encoded=0&v=paper_preview&mkt=zh-cn [2] Aki K, Richards P G. Quantitative seismology: Theory and methods[M]. San Francisco: Freeman W H and Company, 1980. [3] Gilbert F. Excitation of the normal modes of the earth by earthquake sources[J]. Geophysical Journal International, 1971, 22(2):223-226. doi: 10.1111/j.1365-246X.1971.tb03593.x [4] Kennett B L N. Seismic wave propagation in stratified media[M]. Cambridge: Cambridge University Press, 1983. [5] Knopoff L, Randall M J. The compensated linear-vector dipole: A possible mechanism for deep earthquakes[J]. Journal of Geophysical Research, 1970, 75(26):4957-4963. doi: 10.1029/JB075i026p04957 [6] 何永锋, 陈晓非, 张海明.地下核爆炸Lg波的激发机制[J].地球物理学报, 2005, 48(2):367-372. doi: 10.3321/j.issn:0001-5733.2005.02.019He Yongfeng, Chen Xiaofei, Zhang Haiming. The excitation of Lg wave by underground nuclear explosion[J]. Chinese Journal of Geophysics, 2005, 48(2):367-372. doi: 10.3321/j.issn:0001-5733.2005.02.019 [7] 何永锋, 赵克常, 张献兵, 等.地下核爆炸地震波二次源特征[J].地球物理学, 2012, 55(5):1742-1748. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201205031He Yongfeng, Zhao Kechang, Zhang Xianbing, et al. The characteristic of the waveform from the second source induced by underground explosion[J]. Chinese Journal of Geophysics, 2012, 55(5):1742-1748. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201205031 [8] Wang C Y, Herrmann R B. A numerical study of P-, SV-, and Sh-wave generation in a plane layered medium[J]. Bulletin of the Seismological Society of America, 1980, 70(4):1015-1036. http://cn.bing.com/academic/profile?id=d3a3474018dda6a26100f63e2a27504f&encoded=0&v=paper_preview&mkt=zh-cn [9] Dreger D, Helmberger D. Determination of source parameters at regional distances with three-components sparse network data[J]. Journal of Geophysical Research, 1993, 98(B5):8107-8125. doi: 10.1029/93JB00023 [10] Jost M L, Herrmann R B. A student's guide to and review of moment tensor[J]. Seismological Research Letters, 1989, 60(2):37-57. [11] Minson S E, Dreger D S. Stable inversions for complete moment tensors[J]. Geophysical Journal International, 2010, 174(2):585-592. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7c5ebc4b7a212beee0d09197a6f53bd6 [12] Saikia C K. Modified frequency-wavenumber algorithm for regional seismograms using Filon's quadrature: Modeling of Lg waves in eastern North America[J]. Geophysical Journal International, 1994, 118(1):142-158. doi: 10.1111/gji.1994.118.issue-1 [13] Chen X F. A systematic and efficient method of computing normal modes for multilayered half-space[J]. Geophysical Journal International, 1993, 115(2):391-409. doi: 10.1111/gji.1993.115.issue-2 [14] Yao Z X, Harkrider D G. A generalized reflection-transmission coefficient matrix and discrete wavenumber method for synthetic seismograms[J]. Bulletin of the Seismological Society of America, 1983, 73(6):1685-1699. http://cn.bing.com/academic/profile?id=0dbcab95a934b19de3833051441c4f53&encoded=0&v=paper_preview&mkt=zh-cn [15] Langston C A. Source inversion of seismic waveforms: The Koyna, India, earthquakes of 13 September 1967[J]. Bulletin of the Seismological Society of America, 1981, 71(1): 1-24. http://cn.bing.com/academic/profile?id=8b30d4ac48503e30287484e9cd2afa5b&encoded=0&v=paper_preview&mkt=zh-cn [16] Romanowicz B, Dreger D, Pasyanos M, et al. Moniting of strain release in central and northern California using broadband data[J]. Geophysical Research Letters, 1993, 20(15):1643-1646. doi: 10.1029/93GL01540 [17] 赵翠萍.1997-2003年新疆伽师震源区特征的地震学方法研究[D].北京: 中国地震局地球物理研究所, 2006. http: //cdmd.cnki.com.cn/Article/CDMD-85401-2007017046.htm [18] McLaughlin K L, Barker T G, Day S M, et al. Effects of depth of burial on explosion and earthquake regional seismograms: Regional discrimination and yield estimation[R]. Jolla, California, 1988. [19] Fukuyama E, Dreger D S. Performance test of an automated moment tensor determination system for the future "Tokai" earthquake[J]. Earth, Planets and Space, 2000, 52(6):383-392. doi: 10.1186/BF03352250 [20] 郑建常, 陈运泰.基于Langston分解和Hilbert变换约束的区域偏量矩张量反演方法及应用[J].地震学报, 2012, 34(2):171-190. doi: 10.3969/j.issn.0253-3782.2012.02.005Zheng Jianchang, Chen Yuntai. Regional deviatoric moment tensor inversion based on Langston's decomposition and Hilbert transform constraints and its application[J]. Acta Seismologica Sinica, 2012, 34(2):171-190. doi: 10.3969/j.issn.0253-3782.2012.02.005 [21] 林向东, 葛洪魁, 徐平, 等.近场全波形反演:芦山7.0级地震及余震矩张量解[J].地球物理学报, 2013, 56(12):4037-4047. doi: 10.6038/cjg20131209 [22] Templeton D C, Dreger D S. Non-double-couple earthquakes in the long valley volcanic region[J]. Bulletin of the Seismological Society of America, 2006, 96(1):69-79. doi: 10.1785/0120040206 [23] 许力生, 陈运泰.震源深度误差对矩张量反演的影响[J].地震学报, 1997, 19(5):462-470. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700067589