冲击波与破片对波纹杂交夹层板的联合毁伤数值研究

李勇 肖伟 程远胜 刘均 张攀

李勇, 肖伟, 程远胜, 刘均, 张攀. 冲击波与破片对波纹杂交夹层板的联合毁伤数值研究[J]. 爆炸与冲击, 2018, 38(2): 279-288. doi: 10.11883/bzycj-2016-0224
引用本文: 李勇, 肖伟, 程远胜, 刘均, 张攀. 冲击波与破片对波纹杂交夹层板的联合毁伤数值研究[J]. 爆炸与冲击, 2018, 38(2): 279-288. doi: 10.11883/bzycj-2016-0224
LI Yong, XIAO Wei, CHENG Yuansheng, LIU Jun, ZHANG Pan. Numerical research on response of hybrid corrugated sandwich plates subjected to combined blast and fragment loadings[J]. Explosion And Shock Waves, 2018, 38(2): 279-288. doi: 10.11883/bzycj-2016-0224
Citation: LI Yong, XIAO Wei, CHENG Yuansheng, LIU Jun, ZHANG Pan. Numerical research on response of hybrid corrugated sandwich plates subjected to combined blast and fragment loadings[J]. Explosion And Shock Waves, 2018, 38(2): 279-288. doi: 10.11883/bzycj-2016-0224

冲击波与破片对波纹杂交夹层板的联合毁伤数值研究

doi: 10.11883/bzycj-2016-0224
基金项目: 

国家自然科学基金项目 51509096

国家自然科学基金项目 51209099

详细信息
    作者简介:

    李勇(1991-), 男, 硕士

    通讯作者:

    张攀, panzhang@hust.edu.cn

  • 中图分类号: O383

Numerical research on response of hybrid corrugated sandwich plates subjected to combined blast and fragment loadings

  • 摘要: 通过有限元软件LS-DYNA模拟了波纹杂交夹层板在冲击波与破片联合作用下的响应过程,研究了炸药当量、载荷类型和填充方式对波纹杂交夹层板变形与失效模式的影响,并与实体板、间隔板和波纹夹层板的抗联合毁伤性能进行了对比,讨论了波纹杂交夹层板的能量吸收特性。数值计算结果表明:与冲击波单独作用相比,破片群单独作用和冲击波与破片联合作用对结构造成的毁伤更为严重;当药量较小时,波纹夹层板和波纹杂交夹层板的抗联合毁伤性能优于实体板与间隔板,波纹杂交夹层板的抗联合毁伤性能从全填充、迎爆面填充到背爆面填充逐渐降低;当药量较大时,所有结构均产生破口失效;在能量耗散方面,冲击波单独作用时以波纹芯层吸能为主,破片群单独作用和冲击波与破片联合作用时以上面板吸能为主。
  • 图  1  波纹杂交夹层板有限元模型(1/4模型)

    Figure  1.  Finite element model of hybrid corrugated sandwich plate (1/4 model)

    图  2  实体板在联合作用下的毁伤

    Figure  2.  Failure of solid plate under combined blast and fragment loadings

    图  3  爆轰波传播过程

    Figure  3.  Propagation of detonation

    图  4  冲击波传播过程

    Figure  4.  Propagation of shock wave

    图  5  波纹杂交夹层板的响应过程

    Figure  5.  Response process of hybrid corrugated sandwich plate

    图  6  波纹杂交夹层板的失效模式

    Figure  6.  Failure patterns of hybrid plate

    图  7  联合作用时不同结构的失效模式

    Figure  7.  Failure patterns of different structures under combined blast and fragment loadings

    图  8  填充方式对波纹杂交夹层板失效的影响

    Figure  8.  Effect of filling strategy on the failure patterns of hybrid corrugated sandwich plates

    表  1  计算工况及数值结果

    Table  1.   Computational conditions and numerical results

    工况编号 W/g n 填充方式 中心点最大形变/mm 破损形式/塑性应变 变形能/kJ
    f b f b c f b c foam
    HP-1 166 121 F - - 破口 破口 破口 16.644 9.460 4.088 2.424
    HP-2 166 121 U - - 破口 破口 破口 16.744 8.176 3.604 1.556
    HP-3 166 121 L - - 破口 破口 破口 15.920 7.416 4.068 0.812
    HP-4 0 121 F - - 破口 破口 破口 15.824 8.972 3.848 2.240
    HP-5 166 0 F - 19.15 破口 破口 损伤 6.404 7.240 2.056 1.916
    HP-6 111 121 F - 23.12 破口 破口 损伤 14.304 8.044 3.180 2.104
    HP-7 111 121 U - 23.47 破口 破口 损伤 14.600 7.328 2.516 1.336
    HP-8 111 121 L - - 破口 破口 破口 13.756 6.412 3.180 0.624
    HP-9 0 121 F - 22.98 破口 破口 损伤 13.600 7.276 3.012 1.924
    HP-10 111 0 F - 15.40 破口 破口 损伤 5.140 6.308 1.488 1.776
    HP-11 55 121 F - 15.97 破口 破口 0.420 9.616 5.376 1.184 1.556
    HP-12 55 121 U - 16.61 破口 破口 损伤 9.472 4.652 0.896 1.024
    HP-13 55 121 L - 17.21 破口 破口 损伤 9.100 4.384 1.348 0.612
    HP-14 0 121 F - 15.60 破口 破口 0.395 9.544 5.284 1.084 1.492
    HP-15 55 0 F 22.57 7.60 0.420 损伤 0.289 2.568 3.904 0.548 1.476
    EP-1 166 121 - - - 破口 破口 破口 16.052 7.344 3.356 -
    EP-2 111 121 - - 23.16 破口 破口 损伤 13.160 6.200 2.280 -
    EP-3 55 121 - - 15.82 破口 破口 0.273 9.096 3.560 0.868 -
    GP-1 166 121 - - - 破口 破口 - 20.244 - 5.852 -
    GP-2 111 121 - - 32.28 破口 破口 - 16.828 - 5.204 -
    GP-3 55 121 - - 22.07 破口 0.394 - 11.892 - 1.840 -
    SP-1 166 121 - - - 破口 - - 28.584 - - -
    SP-2 111 121 - - - 破口 - - 23.744 - - -
    SP-3 55 121 - 23.41 - 损伤 - - 13.876 - - -
    下载: 导出CSV
  • [1] 侯海量, 张成亮, 李茂, 等.冲击波和高速破片联合作用下夹芯复合舱壁结构的毁伤特性[J].爆炸与冲击, 2015, 35(1):116-123. doi: 10.11883/1001-1455(2015)01-0116-08

    HOU Hailiang, ZHANG Chengliang, LI Mao, et al. Damage characteristics of sandwich bulkhead under the impact of shock and high-velocity fragments[J]. Explosion and Shock Waves, 2015, 35(1):116-123. doi: 10.11883/1001-1455(2015)01-0116-08
    [2] 何翔, 庞伟宾, 曲建波, 等.防护门在空气冲击波和破片作用下的破坏[J].爆炸与冲击, 2004, 24(5):475-479. http://www.bzycj.cn/CN/abstract/abstract9989.shtml

    HE Xiang, PANG Weibin, QU Jianbo, et al. Protective door damaged by air shock wave and fragment arisen from explosion in prototype tunnel[J]. Explosion and Shock Waves, 2004, 24(5):475-479. http://www.bzycj.cn/CN/abstract/abstract9989.shtml
    [3] LEPPÄNEN J. Experiments and numerical analyses of blast and fragment impacts on concrete[J]. International Journal of Impact Engineering, 2005, 31(7):843-860. doi: 10.1016/j.ijimpeng.2004.04.012
    [4] 金乾坤.破片和冲击波毁伤圆柱靶的数值仿真[J].兵工学报, 2006, 27(2):215-218. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bgxb200602006

    JIN Qiankun. Simulation of cylindrical shell damage by fragments and shock waves[J]. Acta Armamentarii, 2006, 27(2):215-218. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bgxb200602006
    [5] RAKVÅG K, UNDERWOOD N, SCHLEYER G, et al. Transient pressure loading of clamped metallic plates with pre-formed holes[J]. International Journal of Impact Engineering, 2013, 53(3):44-55. https://www.sciencedirect.com/science/article/pii/S0734743X12001662
    [6] 张成亮, 朱锡, 侯海量, 等.爆炸冲击波与高速破片对夹层结构的联合毁伤效应试验研究[J].振动与冲击, 2014, 33(15):184-188. http://www.cnki.com.cn/Article/CJFDTotal-ZDCJ201415033.htm

    ZHANG Chengliang, ZHU Xi, HOU Hailiang, et al. Tests for combined damage effect of blast waves and high-velocity fragments on composite sandwich plates[J]. Journal of Vibration and Shock, 2014, 33(15):184-188. http://www.cnki.com.cn/Article/CJFDTotal-ZDCJ201415033.htm
    [7] KONG X S, WU W G, LI J, et al. Experimental and numerical investigation on a multi-layer protective structure under the synergistic effect of blast and fragment loadings[J]. International Journal of Impact Engineering, 2014, 65(2):146-162. https://www.researchgate.net/publication/259515939_Experimental_and_Numerical_Investigation_on_a_Multi-layer_Protective_Structure_under_the_Synergistic_Effect_of_Blast_and_Fragment_Loadings
    [8] 蒋建伟, 侯俊亮, 门建兵, 等.爆炸冲击波作用下预制孔靶板塑性变形规律的研究[J].高压物理学报, 2014, 28(6):723-728. doi: 10.11858/gywlxb.2014.06.013

    JIANG Jianwei, HOU Junliang, MEN Jianbing, et al. Study on deformation of perforated plates under blast loading[J]. Chinese Journal of High Pressure Physics, 2014, 28(6):723-728. doi: 10.11858/gywlxb.2014.06.013
    [9] 杜志鹏, 李晓彬, 夏利娟, 等.反舰导弹攻击舰船舷侧防护结构过程数值仿真[J].哈尔滨工程大学学报, 2006, 27(4):484-487. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hebg200604001&dbname=CJFD&dbcode=CJFQ

    DU Zhipeng, LI Xiaobin, XIA Lijuan, et al. Numerical simulation of anti-ship missile attack warship broadside pro-cess[J]. Journal of Harbin Engineering University, 2006, 27(4):484-487. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hebg200604001&dbname=CJFD&dbcode=CJFQ
    [10] NYSTRÖM U, GYLLTOFT K. Numerical studies of the combined effects of blast and fragment loading[J]. International Journal of Impact Engineering, 2009, 36(8):995-1005. doi: 10.1016/j.ijimpeng.2009.02.008
    [11] HATCH-AGUILAR T, NAJJAR F, SZYMANSKI E. Computational hydrocode study of target damage due to frag-ment-blast impact [C]//26th International Symposium of Ballistics. Livermore, California, USA: Lawrence Livermore National Laboratory, 2011: 1-17. http://digital.library.unt.edu/ark:/67531/metadc840112/
    [12] ZHANG C Z, CHENG Y S, ZHANG P, et al. Numerical investigation of the response of I-core sandwich panels subjected to combined blast and fragment loading[J]. Engineering Structures, 2017, (151):459-471. https://www.researchgate.net/publication/319645640_Numerical_investigation_of_the_response_of_I-core_sandwich_panels_subjected_to_combined_blast_and_fragment_loading
    [13] 段新峰, 程远胜, 张攀, 等.冲击波和破片联合作用下I型夹层板毁伤仿真[J].中国舰船研究, 2015, 10(6):45-59. doi: 10.3969/j.issn.1673-3185.2015.06.008

    DUAN Xinfeng, CHENG Yuansheng, ZHANG Pan, et al. Numerical analysis of the damage on I-core sandwich panels subjected to combined blast and fragment loading[J]. Chinese Journal of Ship Research, 2015, 10(6):45-59. doi: 10.3969/j.issn.1673-3185.2015.06.008
    [14] 李茂, 朱锡, 侯海量, 等.冲击波和高速破片对固支方板的联合作用数值模拟[J].中国舰船研究, 2015, 10(6):60-67. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjcyj201506009

    LI Mao, ZHU Xi, HOU Hailiang, et al. Numerical simulation of steel plates subjected to the impact of both impact waves and fragments[J]. Chinese Journal of Ship Research, 2015, 10(6):60-67. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjcyj201506009
    [15] ZHANG P, CHENG Y S, LIU J, et al. Experimental study on the dynamic response of foam-filled corrugated core sandwich panels subjected to air blast loading[J]. Composites Part B: Engineering, 2016(105):67-81. https://www.deepdyve.com/lp/elsevier/experimental-study-on-the-dynamic-response-of-foam-filled-corrugated-A8Ed0bJ5WD
    [16] CHENG Y S, ZHOU T Y, WANG H, et al. Numerical investigation on the dynamic response of foam-filled corrugated core sandwich panels subjected to air blast loading[J]. Journal of Sandwich Structures & Materials, 2017. DOI: 10.1177/1099636217700350.
    [17] CHENG D S, HUNG C W, PI S J. Numerical simulation of near-field explosion[J]. Journal of Applied Science and Engineering, 2013, 16(1):61-67. https://www.researchgate.net/publication/288763805_Numerical_simulation_of_near-field_explosion
    [18] ZHANG P, CHENG Y S, LIU J, et al. Experimental and numerical investigations on laser-welded corrugated-core sandwich panels subjected to air blast loading[J]. Marine Structures, 2015, 40:225-246. doi: 10.1016/j.marstruc.2014.11.007
    [19] JING L, XI C Q, WANG Z H, et al. Energy absorption and failure mechanism of metallic cylindrical sandwich shells under impact loading[J]. Materials & Design, 2013, 52(24):470-480. https://www.sciencedirect.com/science/article/pii/S0261306913005220
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  5599
  • HTML全文浏览量:  1989
  • PDF下载量:  306
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-11
  • 修回日期:  2017-01-19
  • 刊出日期:  2018-03-25

目录

    /

    返回文章
    返回