低温工况甲烷最小点火能实验研究

赵翔宇 李洪波 李自力 崔淦 付阳

赵翔宇, 李洪波, 李自力, 崔淦, 付阳. 低温工况甲烷最小点火能实验研究[J]. 爆炸与冲击, 2018, 38(2): 353-358. doi: 10.11883/bzycj-2016-0218
引用本文: 赵翔宇, 李洪波, 李自力, 崔淦, 付阳. 低温工况甲烷最小点火能实验研究[J]. 爆炸与冲击, 2018, 38(2): 353-358. doi: 10.11883/bzycj-2016-0218
ZHAO Xiangyu, LI Hongbo, LI Zili, CUI Gan, FU Yang. Experimental study on the minimum ignition energy of methane at low temperature[J]. Explosion And Shock Waves, 2018, 38(2): 353-358. doi: 10.11883/bzycj-2016-0218
Citation: ZHAO Xiangyu, LI Hongbo, LI Zili, CUI Gan, FU Yang. Experimental study on the minimum ignition energy of methane at low temperature[J]. Explosion And Shock Waves, 2018, 38(2): 353-358. doi: 10.11883/bzycj-2016-0218

低温工况甲烷最小点火能实验研究

doi: 10.11883/bzycj-2016-0218
详细信息
    作者简介:

    赵翔宇(1991-),男,硕士研究生

    通讯作者:

    李洪波,lihongbo@upc.edu.cn

  • 中图分类号: O381

Experimental study on the minimum ignition energy of methane at low temperature

  • 摘要: 为探索低温工况下甲烷的爆炸特性,利用自行构建的实验装置,测试了温度为-90~0 ℃、压力为0.1~0.5 MPa的条件下甲烷的最小点火能。研究表明:在研究范围内,随着压力的升高,甲烷的最小点火能减小,且低压时甲烷最小点火能随初始压力的增高减小较快,高压时减小较慢;随着温度的升高,甲烷最小点火能也减小,且低压时甲烷最小点火能随初始温度的增高减小较快,高压时减小较慢;甲烷的最小点火能分别与压力平方的倒数、温度的倒数呈近似线性关系。
  • 图  1  实验装置示意图

    Figure  1.  Schematic diagram of the experimental device

    图  2  点火电路

    Figure  2.  Ignition circuit

    图  3  点火时间-电流-电压曲线

    Figure  3.  Ignition time-current-voltage curve

    图  4  电极间隙对储存最小点火能的影响

    Figure  4.  Effect of electrode gap on storage MIE

    图  5  当量比对储存最小点火能的影响

    Figure  5.  Effect of equivalence ratio on storage MIE

    图  6  甲烷爆炸压力-时间采集曲线

    Figure  6.  Pressure-time acquisition curve of methane explosion

    图  7  计算结果与积分结果

    Figure  7.  Calculated value and the integral value

    图  8  压力对于最小点火能的影响

    Figure  8.  Effect of pressure on MIE

    图  9  压力与最小点火能的关系

    Figure  9.  Relationship between pressure and MIE

    图  10  温度对于最小点火能的影响

    Figure  10.  Effect of temperature on MIE

    图  11  温度与最小点火能的关系

    Figure  11.  Relationship between temperature and MIE

    表  1  本研究结果与其他研究结果对比

    Table  1.   Comparison of this research result with other research results

    来源 Em/mJ 不确定度 温度/K 压力/MPa 当量比
    文献[4] 0.280 \ 300 0.1 1
    文献[14] 0.500 \ 300 0.1 1
    文献[13] 0.330 \ 300 0.1 1
    文献[15] 0.263 \ 300 0.1 1
    本文 0.49 ±0.025 300 0.1 1
    下载: 导出CSV

    表  2  最小点火能测试结果及标准偏差

    Table  2.   MIE test results and standard deviation

    压力/MPa Em/mJ 不确定度
    183 K 213 K 243 K 273 K 183 K 213 K 243 K 273 K
    0.1 0.880 0.720 0.650 0.560 0.0160 0.0160 0.0220 0.0280
    0.3 0.102 0.080 0.076 0.068 0.0070 0.0080 0.0110 0.0160
    0.5 0.037 0.034 0.030 0.026 0.0014 0.0060 0.0100 0.0090
    下载: 导出CSV
  • [1] KARACAN C Ö, RUIZ F A, COTÈ M, et al. Coal Mine Methane: A review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction[J]. International Journal of Coal Geology, 2011, 86(2/3):121-156. https://www.cdc.gov/niosh/mining/UserFiles/works/pdfs/cmmar.pdf
    [2] 钱伯章, 朱建芳.世界非常规天然气资源和利用进展[J].天然气与石油, 2007, 25(2):28-32. https://www.wenkuxiazai.com/doc/3be9c60eb7360b4c2e3f6428-3.html

    QIAN Bozhang, ZHU Jianfang. Non-regular natural gas resources in the world and utilization progress[J]. Natural Gas and Oil, 2007, 25(2):28-32. https://www.wenkuxiazai.com/doc/3be9c60eb7360b4c2e3f6428-3.html
    [3] VANDERSTRAETEN B, TUERLINCKX D, BERGHMANS J, et al. Experimental study of the pressure and temperature dependence on the upper flammability limit of methane/air mixtures[J]. Journal of Hazardous Materials, 1997, 56(3):237-246. doi: 10.1016/S0304-3894(97)00045-9
    [4] LEWIS B, VON ELBE G. Combustion, flames and explosions of gases[M]. New York: Academic Press, 1961.
    [5] ECKHOFF R K, NGO M, OLSEN W. On the minimum ignition energy (MIE) for propane/air[J]. Journal of Hazardous Materials, 2010, 175(1/2/3):293-297. https://www.sciencedirect.com/science/article/pii/S0304389409016409
    [6] SACKS H K, NOVAK T. A method for estimating the probability of lightning causing a methane ignition in an underground mine[C]//Las Meeting, 2006: 931-936.
    [7] HAN J, YAMASHITA H, HAYASHI N. Numerical study on the spark ignition characteristics of a methane-air mixture using detailed chemical kinetics effect of equivalence ratio, electrode gap distance, and electrode radius on MIE, quenching distance, and ignition delay[J]. Combustion & Flame, 2010, 157(7):1414-1421. https://www.researchgate.net/publication/255215763_Numerical_study_on_the_spark_ignition_characteristics_of_a_methane-air_mixture_using_detailed_chemical_kinetics_Effect_of_equivalence_ratio_electrode_gap_distance_and_electrode_radius_on_MIE_quenching
    [8] KELLEY A P, JOMAAS G, LAW C K. Critical radius for sustained propagation of spark-ignited spherical flame[J]. Combust & Flame, 2009, 156(5):1006-1013. https://www.sciencedirect.com/science/article/pii/S0010218008003933
    [9] 谭迎新, 张景林, 张小春.可燃气体(或蒸气)爆炸参数测定[J].兵工学报, 1995, 16(2):56-60. https://www.wenkuxiazai.com/doc/9618e8f95acfa1c7aa00ccd8.html

    TAN Yingxin, ZHANG Jinglin, ZHANG Xiaochun. The determination of explosion characteristics of combustible gases(vapors)[J].Acta Armamentarii, 1995, 16(2):56-60. https://www.wenkuxiazai.com/doc/9618e8f95acfa1c7aa00ccd8.html
    [10] 可燃气体与易燃液体蒸气最小静电点火能测定方法: GB/T 14288-93[S].
    [11] Determination of explosion limits of gases and vapours: BS-EN-1839_2003[S].
    [12] TANG C L, ZHANG S, SI Z B, et al. High methane natural gas/air explosion characteristics in confined vessel[J]. Journal of Hazardous Materials, 2014, 278:520-528. doi: 10.1016/j.jhazmat.2014.06.047
    [13] KONDO S, TAKAHASHI A, TOKUHASHI K. Calculation of minimum ignition energy of premixed gases[J]. Journal of Hazardous Materials, 2003, A103:11-23. https://www.sciencedirect.com/science/article/pii/S0304389403002267
    [14] YUASA T, KADOTA S, TSUE M, et al. Effects of energy deposition schedule on minimum ignition energy in spark ignition of methane/air mixtures[J]. Proceedings of the Combustion Institute, 2002, 29(1):743-750. doi: 10.1016/S1540-7489(02)80095-5
    [15] WANG B, LIU X, XIE C. Effect of temperature on the minimum ignition energy (MIE) of the hydrocarbon combustible gas[J]. Journal of Safety and Environment, 2016, 16(2):92. http://www.en.cnki.com.cn/Article_en/CJFDTotal-AQHJ201602020.htm
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  5406
  • HTML全文浏览量:  1391
  • PDF下载量:  212
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-21
  • 修回日期:  2016-08-31
  • 刊出日期:  2018-03-25

目录

    /

    返回文章
    返回