• ISSN 1001-1455  CN 51-1148/O3
  • EI Compendex、CA收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
高级检索 E-mail Alert

反射波对预混气体爆炸过程与管壁动态响应的影响

周宁 张冰冰 冯磊 耿莹 姜帅 张路

引用本文:
Citation:

反射波对预混气体爆炸过程与管壁动态响应的影响

    作者简介: 周宁(1977—),男,博士,副教授,zhouning@cczu.edu.cn;
  • 基金项目: 江苏省高校青蓝工程项目 SCZ1409700002
    国家青年自然科学基金项目 51204026

  • 中图分类号: O383

Effects of reflected wave on premixed-gas explosion and dynamic response of tube shells

  • CLC number: O383

  • 摘要: 为研究管道内甲烷/空气混合气体火焰和压力波的传播规律,对内载压力波作用下管壁的动态响应进行实验。结果表明,末端闭口实验中,管道末端的反射激波会引起当地火焰亮度的增大,而前端反射激波则有可能导致火焰内部的分离从而出现熄灭与复燃现象。相对于末端开口工况,末端闭口实验时管道两端产生的往复反射激波对管壁具有叠加加载作用,导致管壁产生较大的环向应变。
  • 图 1  实验装置图

    Figure 1.  Schematic of experimental setup

    图 2  传感器测点布置

    Figure 2.  Arrangement of sensors

    图 3  不同工况下管道内各点压力时程曲线

    Figure 3.  Pressure histories from different test points in experimental tubes

    图 4  不同工况下管道应变时程曲线

    Figure 4.  Strain histories in different experimental cases

    图 5  末端闭口工况下典型位置处光电与压力信号对比

    Figure 5.  Pressure and flame signals at typical positions in close-ended tube

    图 6  末端开口工况下典型位置处光电与压力信号对比

    Figure 6.  Pressure and flame signals at typical positions in open-ended tube

    图 7  末端反射激波对管道内压力波传播与管壁应变的影响

    Figure 7.  Effect of the reflected shock wave on the pressure and strain in the tube

    表 1  管道上传感器布置

    Table 1.  Arrangement of sensors on the blast tube

    编号 传感器类型 L/m
    S1 光电 1.0
    S2 光电 1.5
    S3 光电 2.5
    S4 光电 3.5
    S5 光电 4.5
    S6 光电 5.5
    S7 光电 6.5
    S8 光电 8.0
    S9 光电 9.0
    S10 光电 10.0
    S11 压力 1.0
    S12 压力 2.5
    S13 压力 4.5
    S14 压力 6.5
    S15 压力 8.0
    S16 压力 10.0
    S17 应变 6.5
    S18 应变 8.0
    下载: 导出CSV
  • [1] 周凯元, 李宗芬.丙烷-空气爆燃波的火焰面在直管道中的加速运动[J].爆炸与冲击, 2000, 20(2): 137-142. doi: 10.3321/j.issn:1001-1455.2000.02.008
    Zhou Kaiyuan, Li Zongfen. Flame front acceleration of propane-air deflagration in straight tubes[J]. Explosion and Shock Waves, 2000, 20(2): 137-142. doi: 10.3321/j.issn:1001-1455.2000.02.008
    [2] 林伯泉, 周世宁, 张仁贵.瓦斯爆炸过程中激波的诱导条件及其分析[J].实验力学, 1998, 13(4): 463-467.
    Lin Boquan, Zhou Shining, Zhang Rengui. The inducing condition of shock waves in gas explosion[J]. Journal of Experimental Mechanics, 1998, 13(4): 463-467.
    [3] 林伯泉, 张仁贵, 吕恒宏.瓦斯爆炸过程中火焰传播规律及其加速机理的研究[J].煤炭学报, 1999, 24(1): 56-59. doi: 10.3321/j.issn:0253-9993.1999.01.013
    Lin Boquan, Zhang Rengui, Lü Henghong. Research on accelerating mechanism and flame transmission in gas explosion[J]. Journal of China Coal Society, 1999, 24(1): 56-59. doi: 10.3321/j.issn:0253-9993.1999.01.013
    [4] 陈先锋, 陈明, 张庆明, 等.瓦斯爆炸火焰精细结构及动力学特性的实验[J].煤炭学报, 2010, 35(2): 246-249.
    Chen Xianfeng, Chen Ming, Zhang Qingming, et al. Experimental investigation of gas explosion microstructure and dynamic characteristic in a semi-vented pipe[J]. Journal of China Coal Society, 2010, 35(2): 246-249.
    [5] 丁以斌, 肖福全, 宣晓燕, 等. 5种结构障碍物对火焰传播影响的试验研究[J].中国安全科学学报, 2011, 21(2): 63-67. doi: 10.3969/j.issn.1003-3033.2011.02.011
    Ding Yibin, Xiao Fuquan, Xuan Xiaoyan, et al. Experimental study on the effects of five different shaped obstacles on flame propagation[J]. China safety Science Journal, 2011, 21(2): 63-67. doi: 10.3969/j.issn.1003-3033.2011.02.011
    [6] 丁以斌, 肖福全, 宣晓燕, 等.立体结构障碍物的不同放置方式对甲烷预混火焰传播影响的研究[J].煤炭学报, 2012, 37(1): 137-140.
    Ding Yibin, Xiao Fuquan, Xuan Xiaoyan, et al. Deposited manner of solid structure obstacles influence on flame propagation in premixed-methane tube[J]. Journal of China Coal Society, 2012, 37(1): 137-140.
    [7] 林伯泉, 菅从光, 周世宁.受限空间瓦斯爆炸反射波及对火焰传播的影响[J].中国矿业大学学报, 2005, 34(1): 1-5.
    Lin Boquan, Jian Congguang, Zhou Shining. Influence of reflected wave of gas explosion on flame transmission in confined space[J]. Journal of China University of Mining and Technology, 2005, 34(1): 1-5.
  • [1] 周宁张国文王文秀赵会军袁雄军黄维秋 . 点火能对丙烷-空气预混气体爆炸过程及管壁动态响应的影响. 爆炸与冲击, 2018, 38(5): 1031-1038. doi: 10.11883/bzycj-2017-0049
    [2] 喻健良闫兴清 . 硅酸铝棉对火焰速度和爆炸超压的抑制作用. 爆炸与冲击, 2013, 33(4): 363-368. doi: 10.11883/1001-1455(2013)04-0363-06
    [3] 张阿漫姚熊亮闻雪友 . 自由场水中爆炸气泡的物理特性. 爆炸与冲击, 2008, 28(5): 391-400. doi: 10.11883/1001-1455(2008)05-0391-10
    [4] 饶飞雄雷知迪丁珏翁培奋 . 增强型喷射器对爆轰波DDT过程的影响. 爆炸与冲击, 2019, 39(2): 022101-1-022101-9. doi: 10.11883/bzycj-2017-0284
    [5] 张柱晋艳娟 . 反向起爆模型下的冲击波加载. 爆炸与冲击, 2014, 34(2): 223-228. doi: 10.11883/1001-1455(2014)02-0223-06
    [6] 赵翔宇李洪波李自力崔淦付阳 . 低温工况甲烷最小点火能实验研究. 爆炸与冲击, 2018, 38(2): 353-358. doi: 10.11883/bzycj-2016-0218
    [7] 贾光辉黄海胡震东 . 超高速撞击数值仿真结果分析. 爆炸与冲击, 2005, 25(1): 47-53. doi: 10.11883/1001-1455(2005)01-0047-07
    [8] 王昌建郭长铭徐胜利 . 气相爆轰波正反射激波加速研究. 爆炸与冲击, 2007, 27(2): 143-150. doi: 10.11883/1001-1455(2007)02-0143-08
    [9] 喻健良闫兴清李迪 . 采用泄爆管的粉尘爆炸在泄放过程中的压力特性. 爆炸与冲击, 2012, 32(6): 669-672. doi: 10.11883/1001-1455(2012)06-0669-04
    [10] 钟巍田宙 . 等压假设下考虑化学反应动力学影响的约束爆炸准静态压力的计算. 爆炸与冲击, 2013, 33(4): 375-380. doi: 10.11883/1001-1455(2013)04-0375-06
    [11] 梁运涛曾文 . 激波诱导瓦斯爆炸的动力学特性及影响因素. 爆炸与冲击, 2010, 30(4): 370-376. doi: 10.11883/1001-1455(2010)04-0370-07
    [12] 董刚唐敖叶经方范宝春 . 激波聚焦诱导点火和爆轰的数值研究. 爆炸与冲击, 2005, 25(5): 437-444. doi: 10.11883/1001-1455(2005)05-0437-08
    [13] 朱跃进董刚 . 激波冲击火焰的涡量特性研究. 爆炸与冲击, 2015, 35(6): 839-845. doi: 10.11883/1001-1455(2015)06-0839-07
    [14] 薛冰马宏昊沈兆武余勇 . 爆炸容器内小药量实验动态标定压力传感器. 爆炸与冲击, 2015, 35(3): 437-441. doi: 10.11883/1001-1455(2015)03-0437-05
    [15] 孙晓晖陈志华张焕好 . 激波绕射碰撞加速诱导爆轰的数值模拟. 爆炸与冲击, 2011, 31(4): 407-412. doi: 10.11883/1001-1455(2011)04-0407-06
    [16] 滕宏辉张德良李辉煌姜宗林 . 用环形激波聚焦实现爆轰波直接起爆的数值模拟. 爆炸与冲击, 2005, 25(6): 512-518. doi: 10.11883/1001-1455(2005)06-0512-07
    [17] 姚干兵解立峰刘家骢 . 立式激波管内云雾爆轰胞格尺寸的测定与分析. 爆炸与冲击, 2007, 27(4): 312-318. doi: 10.11883/1001-1455(2007)04-0312-07
    [18] 张庆武蒋军成喻源崔益虎 . 基于支持向量机的导管泄爆容器压力峰值预测. 爆炸与冲击, 2014, 34(6): 748-753. doi: 10.11883/1001-1455(2014)06-0748-06
    [19] 李润之黄子超司荣军 . 环境温度对瓦斯爆炸压力及压力上升速率的影响. 爆炸与冲击, 2013, 33(4): 415-419. doi: 10.11883/1001-1455(2013)04-0415-05
    [20] 王德田李泽仁吴建荣刘寿先刘俊蒙建华彭其先陈光华刘乔 . 光纤位移干涉仪在爆轰加载飞片速度测量中的应用. 爆炸与冲击, 2009, 29(1): 105-108. doi: 10.11883/1001-1455(2009)01-0105-04
  • 加载中
图(7)表(1)
计量
  • 文章访问数:  495
  • HTML全文浏览量:  72
  • PDF下载量:  775
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-19
  • 录用日期:  2015-02-05
  • 刊出日期:  2016-07-25

反射波对预混气体爆炸过程与管壁动态响应的影响

    作者简介:周宁(1977—),男,博士,副教授,zhouning@cczu.edu.cn
  • 常州大学油气储运技术省重点实验室, 江苏 常州 213016
基金项目:  江苏省高校青蓝工程项目 SCZ1409700002国家青年自然科学基金项目 51204026

摘要: 为研究管道内甲烷/空气混合气体火焰和压力波的传播规律,对内载压力波作用下管壁的动态响应进行实验。结果表明,末端闭口实验中,管道末端的反射激波会引起当地火焰亮度的增大,而前端反射激波则有可能导致火焰内部的分离从而出现熄灭与复燃现象。相对于末端开口工况,末端闭口实验时管道两端产生的往复反射激波对管壁具有叠加加载作用,导致管壁产生较大的环向应变。

English Abstract

  • 天然气泄漏爆炸事故是油气储运过程中备受关注的问题,气体爆炸导致输气管道撕裂使事故后果更加严重。因此,对可燃气体在受限和非受限空间内的燃烧以及爆炸规律的研究就显得非常重要。周凯元等[1]通过管道内丙烷/空气的预混气体爆燃实验,研究了管道直径、点火能量以及障碍物等因素对爆燃波火焰阵面传播的影响规律。林伯泉等[2-3]也分析了瓦斯爆炸过程中障碍物对火焰传播的加速机理及其对爆炸过程中的激波诱导作用。陈先锋等[4]研究了瓦斯爆炸火焰的动力学行为及其对火焰阵面结构的影响规律。丁以斌等[5-6]通过实验研究了不同样式的平面障碍物和立体结构障碍物对于火焰传播规律的影响。然而,对于密闭输气管道中传播的爆炸波会由于阻火器等连接元件的作用产生较强的反射波,而以往关于该种反射波对预混气体爆炸火焰与压力波传播规律的影响机理的研究并不多。反射波对火焰阵面传播规律的影响,往往与反射波强度以及反射波与火焰相互作用的位置相关[7]。此外,内载爆炸波作用下输气管道管壁的动力学响应及其破坏规律目前研究也不够深入,亟需加强该方面的研究。基于长输管道的安全设计和安全运营,本文中开展末端闭口(闭口端)和末端开口(开口端)工况下甲烷/空气混合气体的燃爆实验,通过对火焰速度、爆炸压力和管壁环向应变的测量,探讨末端反射激波对气体反应及管道响应的影响,以期为后续研究提供一定参考。

    • 实验装置主要由配气系统、抽真空系统、点火系统和数据采集系统构成,如图 1所示。配气系统包括空压机、40 L体积分数为99.9%的甲烷储气瓶和预混气体储罐,实验时按照实验要求配置所需不同组分的预混气体。主体实验管道为316型不锈钢钢管,内径125 mm,外径136 mm,壁厚5.5 mm,总长12 m,设计最大可承受内压为5 MPa。点火系统采用EPT-6点火能量试验台,点火能量可调,最大点火能量1 000 mJ。

      图  1  实验装置图

      Figure 1.  Schematic of experimental setup

    • 为研究管道内气体爆炸的火焰和压力传播规律以及管道的动态响应,分别在管道上布设光电传感器、压力传感器和应变传感器进行实验测量。传感器的布置如图 2所示,自点火端开始,共布置10个光电传感器,6个压力传感器和2个应变传感器,如表 1所示,L为距离点火端距离。由于管道内爆炸波压力较低(预计初始压力约0.2 MPa),因此产生的应变较小,采用半导体应变片来监测管壁的环向应变,该半导体应变片灵敏度约为普通电阻式应变计的55倍,可以监测更小范围内的动态应变信号。

      图  2  传感器测点布置

      Figure 2.  Arrangement of sensors

      编号 传感器类型 L/m
      S1 光电 1.0
      S2 光电 1.5
      S3 光电 2.5
      S4 光电 3.5
      S5 光电 4.5
      S6 光电 5.5
      S7 光电 6.5
      S8 光电 8.0
      S9 光电 9.0
      S10 光电 10.0
      S11 压力 1.0
      S12 压力 2.5
      S13 压力 4.5
      S14 压力 6.5
      S15 压力 8.0
      S16 压力 10.0
      S17 应变 6.5
      S18 应变 8.0

      表 1  管道上传感器布置

      Table 1.  Arrangement of sensors on the blast tube

    • 实验在常温常压下进行,实验中配置的甲烷的体积分数为10.2%,点火能量为1 000 mJ。为研究反射波对管道内预混气体爆炸过程与管道动态响应的影响,开展末端闭口和末端开口2种工况的实验。为使管道内产生较强的前驱冲击波从而获得较大的管道加载效应,在点火端放置一组由6片阻塞率为60%的圆环形钢片串联而成的加速障碍物,环形钢片间距为15 cm,障碍物前端距离点火电极25 cm。

    • 图 3(a)~(b)所示为甲烷体积分数为10.2%时,末端闭口和末端开口2种工况下的管道内各测点的压力时程曲线。从图中可以看出,经过障碍物的激励加速后(0.25~1.00 m),激波的上升沿逐渐变得较为陡峭(S11~S13段),距离点火端1.0 m处,爆炸激波的峰值压力约为0.3 MPa,在激波向下游传播的过程中,峰值压力逐渐降低。对于闭口端实验,爆炸激波到达末端后,在盲板的固壁反射作用下产生反射激波,反射激波自管道末端向点火端传播,并与当地压力波叠加产生更高的压力峰值,如图 3(a)所示。对于开口端实验,由于管道末端直接连通大气,因此在爆炸激波到达末端时,会向管道点火端反射回稀疏波,稀疏波自末端向点火端传播,并与当地压力叠加后产生负压,如图 3(b)所示。

      图  3  不同工况下管道内各点压力时程曲线

      Figure 3.  Pressure histories from different test points in experimental tubes

    • 图 4(a)~(b)分别为末端闭口和末端开口工况下距点火端6.5 m处管壁的应变时程曲线,由图中知,闭口工况下,管壁的动态响应过程非常复杂,管壁应变时程曲线清晰地反映了激波在前后管端的来回反射形成的压力叠加对管道的加载作用。当爆炸激波在管道内来回反射时,管道内的压力会反复叠加,导致管壁周期性地膨胀与收缩。该应变信号主要分为2个部分,首先由激波引起的初始动态应变,其后随着反射激波的往返作用,应变曲线出现较长时间的震荡信号。对于开口端实验,爆炸激波首先导致管壁产生1个环向的冲击应变,其后由于惯性作用,出现收缩现象,但最大应变远小于闭口端实验时产生的应变最大。

      图  4  不同工况下管道应变时程曲线

      Figure 4.  Strain histories in different experimental cases

    • 图 5所示为闭口端实验测得的4个典型位置的压力和光电信号对比图。由图知,随着气体爆炸向管道下游的传播,火焰与压力信号之间时差逐渐增大,即激波逐渐与火焰阵面分离。当激波传播到管道末端时,在盲板处产生反射,反射激波为压缩波并由管道的末端向点火端传播。当末端反射激波与燃烧反应区相遇时,对应时刻的光电信号出现1个阶跃峰值,如图 5(a)~(c)红线框内部分(约0.03 s处)所示,即在反射激波的作用下,此处火焰亮度增加,然而由于无法确定此时气体是否燃烧完全,火焰亮度的增大有可能是反射激波增大了波阵面后方燃烧区预混气体的扰动,因此对当地气体燃烧起到了正激励的作用;另一种情况是,如果此时气体已经完全燃烧,则此时只是反向激波对火焰厚度方向的压缩作用导致的亮度增大。而在管道后段(S8~S10段),由光电信号幅值较低,火焰亮度下降,光电信号的变化反映了明显的火焰淬熄,然后又复燃的现象。林柏泉等[7]研究表明,当一维受限空间内反射激波与在火焰内部与反应区相遇时,对火焰的传播速度并无明显影响,但可能造成火焰内部的分离现象,而从图 5(c)~(d)可知,火焰阵面与反射激波相遇在S8和S10之间,因此分析认为S8所测火焰的熄灭与复燃应该是由反射波的气体伴流作用导致的火焰分离现象。对于图 5(d)中的对比信号(S10与S16),首次末端反射激波通过测点时,火焰阵面尚未传播到该区域,反射激波对火焰传播无影响,此后的火焰内部也有压力作用下火焰亮度增大以及火焰的熄灭与复燃现象,但S10处气体反应已处于反射波流场中,由于缺乏更多的探测手段,此时是否是残留可燃气体的作用导致S10信号的突变目前无法详细解释。

      图  5  末端闭口工况下典型位置处光电与压力信号对比

      Figure 5.  Pressure and flame signals at typical positions in close-ended tube

      图 6所示为末端开口实验测得的4个典型位置的压力与光电信号对比图,由于末端开口,初始激波到达末端后产生的反射波为稀疏波并向点火端传播,稀疏波的到达使得测点处压力迅速下降直至出现负压区,此外稀疏波引起的伴流方向与火焰传播方向相同,会加速火焰传播,但同时会拉长火焰厚度,因此会使得火焰亮度下降,如图 6框内部分中所示,在稀疏波作用区,当地压力降低,对应的光电信号也呈现出迅速下降的趋势。

      图  6  末端开口工况下典型位置处光电与压力信号对比

      Figure 6.  Pressure and flame signals at typical positions in open-ended tube

    • 为分析内部气体爆炸过程中管道的响应规律,选取第1组应变传感器所测应变信号进行分析,并将其与同一位置处所测压力信号进行对比,如图 7所示。图 7(a)(b)分别为闭口端和开口端实验距离点火端6.5 m处压力和应变信号的对比图。

      图  7  末端反射激波对管道内压力波传播与管壁应变的影响

      Figure 7.  Effect of the reflected shock wave on the pressure and strain in the tube

      图 7(a)可知,在管道末端闭口条件下,管壁的环向应变主要有2个部分构成:首先,在爆炸产生的前驱激波作用下,管道呈现环向膨胀状态,即图中框内部分;其次,由于压力激波在管道前端和末端来回反射,管道内压力水平逐次升高,会对管壁实现逐次的加载,产生较大的环向应变,应变信号与压力信号呈现出较好的一致性。此后相当一段时间内,激波在来回反射的过程中逐渐衰减,管道内压下降,管壁应变也随之逐渐趋于初始状态。即对于末端闭口空间内的管道气体爆炸实验,管壁环向应变的最大值是由激波在管道内来会反射逐次加载产生的。末端开口时,由图 7(b)可知,管壁产生的应变主要由前驱激波引起,当管道内压力在端部稀疏波的作用下迅速降为负压直至压力归零的过程中,管壁应变也随之迅速降低,即开口端实验所产生的最大应变是由激波引起的。

    • (1) 密闭管道内气体爆炸时,末端反射激波与火焰相交时,反射激波提高了火焰传播区域的预混气体反应剧烈程度,反射激波作用下火焰亮度增加。

      (2) 密闭管道内气体爆炸时,末端反射激波作用下相应地出现当地火焰亮度增大现象,而前端反射波则有可能引起内部火焰分离而导致测量信号的熄灭与复燃现象。

      (3) 管道末端闭口工况下,管壁的最大环向应变是由激波在管道两端产生的来回反射叠加所引起的,应变较大,管壁的环向应变时程关系与该处压力时程关系具有良好的一致性;而末端开口时,管壁的应变主要由前驱波引起,最大应变比末端闭口工况下的应变小。

参考文献 (7)

目录

    /

    返回文章
    返回