Microstructure and dynamic splitting tensile properties of CF/SSF reinforced coral sand cement mortar
-
摘要: 珊瑚混凝土是一种拉压强度严重不对称的材料,研究其动态拉伸力学性能对岛礁防护工程具有重要意义。为了探究碳纤维(carbon fiber, CF)和不锈钢纤维(stainless steel fiber, SSF)增强珊瑚砂水泥砂浆在冲击荷载作用下的动态拉伸力学性能,采用ø100 mm的分离式霍普金森压杆(split Hopkinson pressure bar, SHPB)装置进行动态劈裂试验,对比分析不同纤维掺量的珊瑚砂水泥砂浆在不同应变率下的动态抗拉强度和能量耗散规律,并结合扫描电镜测试揭示混杂纤维的作用机理。结果表明:复掺CF与SSF的珊瑚砂水泥砂浆试样的静、动态抗拉强度都有明显的提高,最大动态抗拉强度增长率为66.03%。在相同应变率下,试样的动态抗拉强度与纤维掺量呈正相关,其破碎程度与纤维掺量呈负相关,纤维的桥接作用对试样裂缝开展具有良好的抑制效果。在同一纤维掺量下,动态增长因子随应变率的升高明显增大,动态增长因子最大值为2.44,表现出明显的拉伸应变率效应。珊瑚砂水泥砂浆试样的破碎程度及耗散能量均与应变率呈正相关,且纤维掺量越高,试样破坏时需要耗散的能量越多。Abstract: Coral concrete is a material with severely asymmetric tensile and compressive strengths. Therefore, studying the dynamic tensile mechanical properties of coral concrete is of great significance for island reef protective engineering. To investigate the dynamic tensile mechanical properties of carbon fiber (CF) and stainless steel fiber (SSF) reinforced coral sand cement mortar under impact loading, dynamic splitting tests were conducted using a 100 mm diameter split Hopkinson pressure bar (SHPB) device. Comparative analysis was carried out on the dynamic tensile strength and energy dissipation patterns of coral sand cement mortars with different fiber contents at various strain rates. In the SHPB tests, cement mortar specimens with different fiber contents were prepared: no fiber, 1.5% CF, 1.5% CF with 0.5% SSF, 1.5% CF with 1.0% SSF, and 1.5% CF with 1.5% SSF. The specimens were subjected to four impact speeds: 3.45, 4.86, 6.54, and 7.34 m/s. This allowed for impact-splitting tests conducted at different strain-rate ranges. In addition, SEM (Scanning Electron Microscope) tests were performed to reveal the action mechanism of the hybrid fibers. The results indicate that the static and dynamic tensile strengths of CF and SSF-reinforced coral sand cement mortar samples are significantly improved, with a maximum dynamic tensile strength increase rate of 66.03%. At the same strain rate, the dynamic tensile strength of the samples positively correlates with the fiber content, while the fragmentation degree negatively correlates with the fiber content. The fiber bridging effect effectively suppresses the development of cracks in the samples. Under the same fiber content, the dynamic increase factor increases significantly with the increase of strain rate, with a maximum increase factor of 2.44, demonstrating a clear tensile strain rate effect. The fragmentation degree and dissipated energy of coral sand cement mortar samples positively correlate with the strain rate, and samples with higher fiber dosages require more energy to dissipate during failure.
-
表 1 水泥、粉煤灰和硅灰的化学成分
Table 1. Chemical composition of cement, fly ash, and silica fume
组分 质量分数/% CaO Al2O3 SiO2 Fe2O3 MgO SO3 水泥 51.42 8.26 24.99 4.03 3.71 2.51 粉煤灰 5.60 30.14 50.26 4.16 − 2.16 硅灰 0.11 0.32 96.74 0.08 0.10 − 表 2 碳纤维和316L不锈钢纤维的基本性能参数
Table 2. Basic performance parameters of carbon and 316L stainless steel fibers
种类 长度/
mm直径/
μm抗拉强度/
MPa密度/
(g·cm−3)伸长率/% CF 10 7-10 3 700 1.76 1.5 SSF 12 200 1 950 7.98 5.0 表 3 碳纤维/不锈钢纤维珊瑚砂水泥砂浆配合比
Table 3. Mix ratio of carbon fiber/stainless steel fiber reinforced coral sand cement mortar
工况 配合比/(kg·m−3) 水泥 粉煤灰 硅灰 珊瑚砂 人工海水 减水剂 CF SSF 1 711 253 95 1 373 274 9 0 0 2 711 253 95 1 373 274 9 26.4 0 3 711 253 95 1 373 274 9 26.4 39.9 4 711 253 95 1 373 274 9 26.4 79.8 5 711 253 95 1 373 274 9 26.4 119.7 表 4 同一龄期下不同纤维掺量试样静态抗拉强度
Table 4. Static tensile strength of specimens with different fiber contents at the same age
试件编号 静态劈裂拉伸强度 /MPa 平均强度/MPa 强度增长率 /% CF/SSF-0/0 5.0 5.6 5.6 5.4 CF/SSF-1.5/0 6.1 5.9 6.4 6.1 12.96 CF/SSF-1.5/0.5 8.2 7.5 7.5 7.7 42.59 CF/SSF-1.5/1.0 7.6 8.3 8.4 8.1 50.00 CF/SSF-1.5/1.5 9.3 8.8 8.7 8.9 64.81 注:试件编号CF/SSF-0/0表示CF的体积分数为0%,SSF体积分数为0%。 -
[1] 陈宗平, 庞云升, 许瑞天, 等. CFRP-钢复合约束海洋混凝土柱轴压性能试验研究及承载力计算 [J]. 建筑结构学报, 2023, 44(7): 116–128. DOI: 10.14006/j. jzjgxb.2022.0102. DOI: 10.14006/j.jzjgxb.2022.0102.CHEN Z P, PANG Y S, XU R T, et al. Experimental study on axial compression performance and bearing capacity calculation of CFRP-steel confined ocean concrete columns [J]. Journal of Building Structures, 2023, 44(7): 116–128. DOI: 10.14006/j.jzjgxb.2022.0102. [2] SUN L, WANG C, ZHANG C W, et al. Experimental investigation on the bond performance of sea sand coral concrete with FRP bar reinforcement for marine environments [J]. Advances in Structural Engineering, 2023, 26(3): 533–546. DOI: 10.1177/13694332221131153. [3] DENG Z H, WU D, WANG Y M. Mechanical properties and failure criteria of coral concrete under true triaxial compression [J]. Journal of Materials Science, 2022, 57(37): 17622–17636. DOI: 10.1007/S10853-022-07728-1. [4] WANG A G, HUANG M, CHU Y J, et al. Optimization of mix proportion of basic magnesium sulfate cement-based high-strength coral concrete [J]. Construction and Building Materials, 2022, 341: 127709. DOI: 10.1016/j.conbuildmat.2022.127709. [5] SUN J L, MA W C, GUO R Q, et al. Preparation and dynamic mechanical properties of fiber-reinforced high-strength all-coral-sand seawater concrete [J]. Structures, 2023, 54(1): 1623–1636. DOI: 10.1016/j.istruc.2023.06.006. [6] FU Q, XU W R, HE J Q, et al. Dynamic strength criteria for basalt fibre-reinforced coral aggregate concrete [J]. Composites Communications, 2021, 28: 100983. DOI: 10.1016/j.coco.2021.100983. [7] FU Q, WANG Z H, PENG G, et al. Pore structure related triaxial mechanical response and strength criterion of basalt fibre-reinforced coral aggregate concrete [J]. Journal of Central South University, 2023, 30(4): 1325–1344. DOI: 10.1007/s11771-023-5298-4. [8] WANG Z B, LI P F, HAN Y D, et al. Dynamic compressive properties of seawater coral aggregate concrete (SCAC) reinforced with mono or hybrid fibers [J]. Construction and Building Materials, 2022, 340(1): 127801. DOI: 10.1016/j.conbuildmat.2022.127801. [9] LIU B, ZHOU J K, WEN X Y, et al. Experimental investigation on the impact resistance of carbon fibers reinforced coral concrete [J]. Materials, 2019, 12(23): 4000. DOI: 10.3390/ma12234000. [10] 王磊, 谷文慧, 汪稔, 等. 碳纤维增强珊瑚混凝土抗冲击性能试验研究 [J]. 硅酸盐通报, 2019, 38(10): 3339–3343. DOI: 10.16552/j.cnki.issn1001-1625.2019.10.044.WANG L, GU W H, WANG N, et al. Experimental study on shock resistance of carbon fiber reinforced coral concrete [J]. Bulletin of the Chinese Ceramic Society, 2019, 38(10): 3339–3343. DOI: 10.16552/j.cnki.issn1001-1625.2019.10.044. [11] 张继旺, 黄满锋, 苏仕参, 等. 高强珊瑚混凝土 (HSCC) 单轴受压性能试验研究 [J]. 硅酸盐通报, 2022, 41(7): 2275–2291. DOI: 10.16552/j.cnki.issn1001-1625.2022.07.029.ZHANG J W, HUANG M F, SU S C, et al. Experimental study on uniaxial compression performance of high strength coral concrete (HSCC) [J]. Bulletin of the Chinese Ceramic Society, 2022, 41(7): 2275–2291. DOI: 10.16552/j.cnki.issn1001-1625.2022.07.029. [12] KIM M, YOO D, YOON Y. Effects of geometry and hybrid ratio of steel and polyethylene fibers on the mechanical performance of ultra-high-performance fiber-reinforced cementitious composites [J]. Journal of Materials Research and Technology, 2019, 8(2): 1835–1848. DOI: 10.1016/j.jmrt.2019.01.001. [13] 赵焕起, 李国忠. 混杂纤维增强水泥基复合材料的力学性能 [J]. 复合材料学报, 2014, 31(1): 140–145. DOI: 10.13801/j.cnki.fhclxb.2014.01.021.ZHAO H Q, LI G Z. Mechanics performance of hybrid fiber reinforced cement-based composites [J]. Acta Materiae Compositae Sinica, 2014, 31(1): 140–145. DOI: 10.13801/j.cnki.fhclxb.2014.01.021. [14] QIN Q L, MENG Q S M, MEI Q H, et al. Dynamic response characteristics of coral reef sand concrete under impact loading [J]. Journal of Building Engineering, 2023, 66: 105847. DOI: 10.1016/j.jobe.2023.105847. [15] 吴文娟, 汪稔, 朱长歧, 等. 珊瑚骨料混凝土动态压缩性能的试验研究 [J]. 建筑材料学报, 2019, 22(1): 7–14. DOI: 10.3969/j.issn.1007-9629.2019.01.002.WU W J, WANG R, ZHU C Q, et al. Experiment study on dynamic compression performance of coral aggregate concrete [J]. Journal of Building Materials, 2019, 22(1): 7–14. DOI: 10.3969/j.issn.1007-9629.2019.01.002. [16] 程雨竹, 马林建, 王磊, 等. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土动力特性研究 [J]. 材料导报, 2024, 38(5): 23070191. DOI: 10.11896/cldb.23070191.CHENG Y Z, MA L J, WANG L, et al. Dynamic mechanical properties of modified polypropylene fiber-reinforced high-strength coral concrete under impact load [J]. Materials Reports: 1–17[2024-02-28]. DOI: 10.11896/cldb.23070191. [17] 郭瑞奇, 任辉启, 龙志林, 等. 大直径SHTB实验装置数值模拟及混凝土细观骨料模型动态直拉研究 [J]. 爆炸与冲击, 2020, 40(9): 093101. DOI: 10.11883/bzycj-2020-0015.GUO R Q, REN H Q, LONG Z L, et al. Numerical simulation on a large diameter SHTB apparatus and dynamic tensile responses of concrete based on mesoscopic models [J]. Explosion and Shock Waves, 2020, 40(9): 093101. DOI: 10.11883/bzycj-2020-0015. [18] 郑志豪, 任辉启, 龙志林, 等. PP/CF 增强珊瑚砂水泥基复合材料冲击压缩力学性能研究 [J]. 爆炸与冲击, 2022, 42(7): 073104. DOI: 10.11883/bzycj-2021-0297.ZHENG Z H, REN H Q, LONG Z L, et al. A study on impact compression mechanical properties of PP/CF reinforced coral sand cement-based composites [J]. Explosion and Shock Waves, 2022, 42(7): 073104. DOI: 10.11883/bzycj-2021-0297. [19] YUAN P, WEI N N, MA Q Y. Effect of nonparallel end face on energy dissipation analyses of rocklike materials based on SHPB tests [J]. Shock and Vibration, 2019, 2019: 2040947. DOI: 10.1155/2019/2040947. [20] 郭瑞奇, 任辉启, 张磊, 等. 分离式大直径 Hopkinson 杆实验技术研究进展 [J]. 兵工学报, 2019, 40(7): 1518–1536. DOI: 10.3969/j.issn.1000-1093.2019.07.023.GUO R Q, REN H Q, ZHANG L, et al. Research progress of large-diameter split Hopkinson bar experimental technique [J]. Acta Armamentarii, 2019, 40(7): 1518–1536. DOI: 10.3969/j.issn.1000-1093.2019.07.023. [21] 李妤茜, 乔秀臣. 外部因素对钙矾石晶体结构及形貌的影响综述 [J]. 硅酸盐通报, 2023, 42(1): 31–47. DOI: 10.16552/j.cnki.issn1001-1625.20221118.004.LI Y X, QIAO X C. Review on influences of external factors on crystal structure and morphology of ettringite [J]. Bulletin of the Chinese Ceramic Society, 2023, 42(1): 31–47. DOI: 10.16552/j.cnki.issn1001-1625.20221118.004. [22] 黄勇, 史才军, 欧阳雪, 等. 混凝土劈裂拉伸测试方法及性能研究进展 [J]. 材料导报, 2021, 35(1): 1131–1140. DOI: 10.11896/cldb.20010003.HUANG Y, SHI C J, OUYANG X, et al. Research progress on splitting tensile test methods and mechanical properties of concrete [J]. Materials Reports, 2021, 35(1): 1131–1140. DOI: 10.11896/cldb.20010003. [23] 姚勇, 杨贞军, 张昕, 等. UHPFRC 圆盘动态劈裂试验及基于 μXCT 图像的破坏机理研究 [J]. 爆炸与冲击, 2023, 43(5): 053103. DOI: 10.11883/bzycj-2022-0243.YAO Y, YANG Z J, ZHANG X et al. Dynamic split tests of UHPFRC discs and failure mechanism analysis based on µXCT images [J]. Explosion and Shock Waves, 2023, 43(5): 053103. DOI: 10.11883/bzycj-2022-0243. [24] 董凯, 任辉启, 阮文俊, 等. 珊瑚砂应变率效应研究 [J]. 爆炸与冲击, 2020, 40(9): 093102. DOI: 10.11883/bzycj-2019-0432.DONG K, REN H Q, RUAN W J, et al. Study on strain rate effect of coral sand [J]. Explosion and Shock Waves, 2020, 40(9): 093102. DOI: 10.11883/bzycj-2019-0432. [25] 刘婷, 麻海燕, 吴彰钰, 等. 碱式硫酸镁水泥混凝土的冲击压缩性能 [J]. 建筑材料学报, 2021, 24(3): 562–570. DOI: 10.3969/j.issn.1007-9626.2021.03.016.LIU T, MA H Y, WU Z Y, et al. Impact compressive properties of basic magnesium sulfate cement concrete [J]. Journal of Bilding Materials, 2021, 24(3): 562–570. DOI: 10.3969/j.issn.1007-9626.2021.03.016. [26] LUNDBERG B. A split Hopkinson bar study of energy absorption in dynamic rock fragmentation [C]//Inter-national Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Pergamon, 1976, 13(6): 187–197. DOI: 10.1016/0148-9062(76)91285-7. [27] 田正宏, 江桂林, 吴军, 等. 高应变率下新型纤维砂浆动态劈拉特性 [J]. 建筑材料学报, 2018, 21(2): 189–195. DOI: 10.3969/j.issn.1007-9626.2018.02.003.TIAN Z H, JIANG G L, WU J, et al. Dynamic splitting tensile properties of mortar mixed with new fibers subjected to high strain rate [J]. Journal of Building Materials, 2018, 21(2): 189–195. DOI: 10.3969/j.issn.1007-9626.2018.02.003. [28] 党发宁, 李玉涛, 任劼, 等. 混凝土冲击破坏动态力学及能量特性分析 [J]. 爆炸与冲击, 2022, 42(8): 083202. DOI: 10.11883/bzycj-2021-0444.DANG F N, LI Y T, REN J, et al. Analysis of dynamic mechanics and energy characteristics of concrete impact failure [J]. Explosion and Shock Waves, 2022, 42(8): 083202. DOI: 10.11883/bzycj-2021-0444.