颅脑爆炸伤致伤机制及防护研究进展

柳占立 杜智博 张家瑞 严子铭 栗志杰 王鹏 康越 黄献聪 马天 费舟 庄茁

柳占立, 杜智博, 张家瑞, 严子铭, 栗志杰, 王鹏, 康越, 黄献聪, 马天, 费舟, 庄茁. 颅脑爆炸伤致伤机制及防护研究进展[J]. 爆炸与冲击, 2022, 42(4): 041101. doi: 10.11883/bzycj-2021-0053
引用本文: 柳占立, 杜智博, 张家瑞, 严子铭, 栗志杰, 王鹏, 康越, 黄献聪, 马天, 费舟, 庄茁. 颅脑爆炸伤致伤机制及防护研究进展[J]. 爆炸与冲击, 2022, 42(4): 041101. doi: 10.11883/bzycj-2021-0053
LIU Zhanli, DU Zhibo, ZHANG Jiarui, YAN Ziming, LI Zhijie, WANG Peng, KANG Yue, HUANG Xiancong, MA Tian, FEI Zhou, ZHUANG Zhuo. Progress in the mechanism and protection of blast-induced traumatic brain injury[J]. Explosion And Shock Waves, 2022, 42(4): 041101. doi: 10.11883/bzycj-2021-0053
Citation: LIU Zhanli, DU Zhibo, ZHANG Jiarui, YAN Ziming, LI Zhijie, WANG Peng, KANG Yue, HUANG Xiancong, MA Tian, FEI Zhou, ZHUANG Zhuo. Progress in the mechanism and protection of blast-induced traumatic brain injury[J]. Explosion And Shock Waves, 2022, 42(4): 041101. doi: 10.11883/bzycj-2021-0053

颅脑爆炸伤致伤机制及防护研究进展

doi: 10.11883/bzycj-2021-0053
详细信息
    作者简介:

    柳占立(1981- ),男,博士,副教授,liuzhanli@mail.tsinghua.edu.cn

    通讯作者:

    庄 茁(1952- ),男,博士,教授,博士生导师,zhuangz@tsinghua.edu.cn

  • 中图分类号: O389

Progress in the mechanism and protection of blast-induced traumatic brain injury

  • 摘要: 颅脑爆炸伤是现代战争中士兵面临的主要伤害之一,近年来受到广泛关注。冲击波经由颅脑传播带来的直接伤害被称为初级爆炸伤。目前,初级颅脑爆炸伤致伤机制尚不明确,可能是应力波传播、颅骨弯曲变形、颅脑空化及躯干压缩等多种因素共同作用的结果。该研究是涉及多学科交叉、多物理场耦合及短时和长时效应共存的复杂问题,需要通过建立描述冲击波和颅脑相互作用的高精度、多尺度和多物理场数值模型,发展测量颅骨应变、颅内压力、加速度等力学指标的物理测试系统,结合人体和动物病理、生理、行为学等综合因素分析,最终揭示颅脑爆炸伤致伤机制。本文中介绍了初级颅脑爆炸伤致伤机制,给出了颅脑爆炸伤的行为学、生理学相关的医学评价指标,以及颅骨应变、颅内压力等关键力学评估指标,提出了基于致伤机制和评价指标的防护结构设计方法,包括基于新型防冲击波材料的头盔系统改进、头盔缓冲系统设计、增加头部保护系统的封闭性等,最后展望了在精细化建模、原位实验及防护系统设计等诸多方面的发展趋势。
  • 1(a)  爆炸冲击波引起颅脑损伤[9]

    1(a).  Traumatic brain injury caused by blast wave[9]

    图  1(b)  爆炸冲击波载荷特点

    Figure  1(b).  Characteristics of blast loading

    图  2  颅骨弯曲变形过程[31]

    Figure  2.  Flexural deformation process of the skull[31]

    图  3  颅骨振动有限元模拟[35]

    Figure  3.  Finite element simulation of the flexural deformation of the skull[35]

    图  4  冲击波正面作用时颅脑压力云图与颅骨变形云图[37]

    Figure  4.  Nephograms of the brain pressure and skull displacement caused by the frontal impact of the blast wave[37]

    图  5  大脑椭球体模型的二维示意图[43]

    Figure  5.  Two dimensional diagrams of the brain ellipsoid model[43]

    图  6  直径457 mm的激波管示意图[44]

    Figure  6.  The shock tube of 457 mm in diameter[44]

    图  7  研究bTBI的多尺度数值模型[51]

    Figure  7.  Multi-scale numerical model for bTBI study[51]

    图  8  损伤分类

    Figure  8.  Damage classification

    图  9  人体头部及肺部冲击波超压耐受曲线[60]

    Figure  9.  Shock wave overpressure tolerance curves of the human head and lungs[60]

    图  10  高仿真头颈部模型主要传感器的布置(清华大学)[62]

    Figure  10.  Sensor layout on the high-fidelity head and neck model (Tsinghua University)[62]

    图  11  高仿真头颈部模型与激波管实验平台[62]

    Figure  11.  High-fidelity head and neck model and shock tube experimental platform[62]

    图  12  实爆实验布置情况[63]

    Figure  12.  Layout of the explosion experiment[63]

    图  13  头部压力监测位置[63]

    Figure  13.  Head pressure monitoring positions[63]

    图  14  爆炸性颅脑损伤(bTBI)模型的细节[65]

    Figure  14.  Details of the model of explosive brain injury (bTBI)[65]

    图  15  爆破实验装置[66]

    Figure  15.  Blasting experimental device[66]

    图  16  大鼠头部暴露的位置[67]

    Figure  16.  Location of rat head exposed [67]

    图  17  不同头盔的防护效能[78]

    Figure  17.  Protection effectiveness of different helmets[78]

    图  18  头部矢状面和冠状面以及头盔构形[80]

    Figure  18.  The vertical plane and coronal plane of the head, as well as the helmet configuration[80]

    图  19  泡沫材料对矢状面和冠状面模型的影响[80]

    Figure  19.  Influences of the foam material on the sagittal model and coronal plane model[80]

    图  20  不同厚度泡沫垫的应力时程曲线[81]

    Figure  20.  The time history of stress in the foam pads of different thicknesses[81]

    图  21  不同性能泡沫垫中应力的时间历程[81]

    Figure  21.  The time histories of stress in the foam pads with different properties[81]

    图  22  排爆头盔模型[82]

    Figure  22.  Explosive ordnance disposal helmet model[82]

    图  23  全系统头部防护(头盔+眼部防护装置+下颚部防护装置)[53]

    Figure  23.  Full system head protection (helmet + visor + mandibular shield)[53]

    图  24  不同头部防护组合的效果对比[53]

    Figure  24.  Comparison of the effects of different head protection combinations[53]

    图  25  装备多层防护面罩头盔的仿真模型[83]

    Figure  25.  Simulation model of helmet equipped with a multi-layer face shield[83]

    图  26  面部结构防护效果对比[83]

    Figure  26.  Comparison of the facial protective effects[83]

    表  1  格拉斯哥昏迷评分

    Table  1.   Glasgow coma scale (GCS)

    评分眼睛状况口头表达动态行为
    无法监测例如:严重的眼外伤例如:插管例如:瘫痪
    1不睁眼不能言语刺痛下肢体不动
    2刺痛睁眼只能发音刺痛下有肢体伸直
    3呼唤睁眼回答含糊不清刺痛下有肢体屈曲
    4自动睁眼回答有错误刺痛下有躲避反应
    5回答正确能定位刺痛位置
    6按吩咐动作
    下载: 导出CSV

    表  2  致伤阈值相关性[54]

    Table  2.   Correlation of the injury threshold[54]

    致伤阈值计算受伤区域与行为学损伤区域匹配相关度
    标准压力/PaMises应力/Pa等效应变体积能量率/(J·s−1剪切能量率/(J·s−1轴突拉伸轴突拉伸能量率/(J·s−1
    灰质5639565672
    白质44334422443356
    下载: 导出CSV

    表  3  bTBI常见医学指标[71]

    Table  3.   Common medical indexes of bTBI[71]

    事件机制血清生物标志物
    轻度创伤性脑损伤中度创伤性脑损伤严重创伤性脑损伤
    神经元和神经胶质细胞死亡激活触发坏死和/
    或凋亡的因子
    神经元:NSE,Ctau,SBP,
    所有血影蛋白
    神经元:NSE, PNF-H, NF-H,
    NMDAR, Hsp70, UCH-L1, C-tau,
    所有血影蛋白, SBP,促泌素
    神经元:NSE, PNF-H, NF-H,NMDAR, Hsp70, UCH-L1, C-tau,
    所有血影蛋白, SBP, 促泌素
    神经胶质:S100β,
    GFAP,MBP,C-tau
    神经胶质: S100β, GFAP,MBP,
    NMDAR, Hsp70, IL-1β, L-6, L-8,
    TN-α,C-tau, AQP4
    神经胶质: S100β, GFAP, MBP, NMDAR, Hsp70, IL-1β, IL-6,
    IL-8, TN-α, C-tau, AQP4
    血管
    痉挛
    血管收缩和松弛的失调Hsp70, TNF-α, VEGF,
    Claudin-5, vWF
    Hsp70, TNF-α, VEGF,
    Claudin-5, vWF
    水肿毒性和炎症因子引起的血管生成和细胞毒性事件Hsp70, IL-1β, IL-6, IL-8, VEGF, Claudin-5, vWF, AQP4, MMP9Hsp70, IL-1β, IL-6, IL-8, VEGF, Claudin-5, vWF, AQP4, MMP9
    轴突
    损伤
    机械损伤;神经元变性S100β, NSE, C-tau, MBP,
    SBP, 所有血影蛋白
    S100β, MBP, NSE, PNF-H, NMDAR, Hsp70, C-tau,
    所有血影蛋白, SBP
    S100β, MBP, NSE, PNF-H, NMDAR, Hsp70, C-tau,
    所有血影蛋白, SBP
    炎症细胞因子释放与细胞应激IL-1β, IL-6, IL-8,
    TNF-α, IFN -γ
    Hsp70, IL-1β, IL-6,
    IL-8, TNF-α, IFN -γ
    Hsp70, IL-1β, IL-6, IL-8,
    TNF-α, IFN -γ
    代谢
    变化
    缺氧;能量需求改变、
    离子稳态与神经传递;
    增加了修复过程
    血浆铜蓝蛋白,HIF-1α血浆铜蓝蛋白,HIF-1α
    下载: 导出CSV
  • [1] MAAS A I R, MENON D K, ADELSON P D, et al. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research [J]. The Lancet Neurology, 2017, 16(12): 987–1048. DOI: 10.1016/S1474-4422(17)30371-X.
    [2] PHIPPS H, MONDELLO S, WILSON A, et al. Characteristics and impact of U. S. military blast-related mild traumatic brain injury: a systematic review [J]. Frontiers in Neurology, 2020, 11: 559318. DOI: 10.3389/fneur.2020.559318.
    [3] TANIELIAN T, HAYCOX L H, SCHELL T L, et al. Invisible wounds of war. summary and recommendations for addressing psychological and cognitive injuries: ADA480992 [R/OL]. Santa Monica: Rand Corp, 2008. [2021-02-03]. https://apps.dtic.mil/sti/citations/ADA480992.
    [4] 马奔, 李文静. 天津港“8·12”事故应急合作网络与协同应对 [J]. 国家行政学院学报, 2017(4): 91–96. DOI: 10.3969/j.issn.1008-9314.2017.04.015.
    [5] 康清清, 顾勤平, 周昱辰, 等. 江苏响水“3·21”特大爆炸事故的地震学鉴别和当量估计 [C] // 2019年中国地球科学联合学术年会论文集(二十). 北京: 中国和平音像电子出版社, 2019.
    [6] 谢忠设. 危化品车辆运输, 该怎么疏通最后一公里? [J]. 中国石油和化工, 2020(9): 60–63. DOI: 10.3969/j.issn.1008-1852.2020.09.018.
    [7] 徐唯, 宋瑛, 梁爱民, 等. 特大爆炸事故幸存者创伤后应激障碍的初步研究 [J]. 中国心理卫生杂志, 2003, 17(9): 603–606. DOI: 10.3321/j.issn:1000-6729.2003.09.008.
    [8] MOORE D F, RADOVITZKY R A, SHUPENKO L, et al. Blast physics and central nervous system injury [J]. Future Neurology, 2008, 3(3): 243–250. DOI: 10.2217/14796708.3.3.243.
    [9] MILLER T C, ZWERDLING D. Brain injuries remain undiagnosed in thousands of soldiers [DB/OL]. (2010-06-07)[2021-02-03]. https://www.propublica.org/article/brain-injuries-remain-undiagnosed-in-thousands-of-soldiers.
    [10] KOBEISSY F H. Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects [M]. Boca Raton: CRC Press, 2015.
    [11] TEASDALE G, JENNETT B. Assessment and prognosis of coma after head injury [J]. Acta Neurochirurgica, 1976, 34(1): 45–55. DOI: 10.1007/BF01405862.
    [12] DAL CENGIO LEONARDI A, BIR C A, RITZEL D V, et al. Intracranial pressure increases during exposure to a shock wave [J]. Journal of Neurotrauma, 2011, 28(1): 85–94. DOI: 10.1089/neu.2010.1324.
    [13] DAL CENGIO LEONARDI A, KEANE N J, BIR C A, et al. Head orientation affects the intracranial pressure response resulting from shock wave loading in the rat [J]. Journal of Biomechanics, 2012, 45(15): 2595–2602. DOI: 10.1016/j.jbiomech.2012.08.024.
    [14] DAL CENGIO LEONARDI A, KEANE N J, HAY K, et al. Methodology and evaluation of intracranial pressure response in rats exposed to complex shock waves [J]. Annals of Biomedical Engineering, 2013, 41(12): 2488–2500. DOI: 10.1007/s10439-013-0850-2.
    [15] BAUMAN R A, LING G, TONG L, et al. An introductory characterization of a combat-casualty-care relevant swine model of closed head injury resulting from exposure to explosive blast [J]. Journal of Neurotrauma, 2009, 26(6): 841–860. DOI: 10.1089/neu.2008.0898.
    [16] BOLANDER R, MATHIE B, BIR C, et al. Skull flexure as a contributing factor in the mechanism of injury in the rat when exposed to a shock wave [J]. Annals of Biomedical Engineering, 2011, 39(10): 2550. DOI: 10.1007/s10439-011-0343-0.
    [17] MUGGIA-SULLAM M. Blast injury [M]//GULLO A. Anaesthesia, Pain, Intensive Care and Emergency Medicine. Milano: Springer, 2002: 363−368. DOI: 10.1007/978-88-470-2099-3_34.
    [18] CHOI C H. Mechanisms and treatment of blast induced hearing loss [J]. Korean Journal of Audiology, 2012, 16(3): 103–107. DOI: 10.7874/kja.2012.16.3.103.
    [19] SHUPAK A, DOWECK I, NACHTIGAL D, et al. Vestibular and audiometric consequences of blast injury to the ear [J]. Archives of Otolaryngology–Head & Neck Surgery, 1993, 119(12): 1362–1367. DOI: 10.1001/archotol.1993.01880240100013.
    [20] DE RÉGLOIX S B, CRAMBERT A, MAURIN O, et al. Blast injury of the ear by massive explosion: a review of 41 cases [J]. Journal of the Royal Army Medical Corps, 2017, 163(5): 333–338. DOI: 10.1136/jramc-2016-000733.
    [21] QURESHI T A, AWAN M S, HASSAN N H, et al. Effects of bomb blast injury on the ears: the Aga Khan University Hospital experience [J]. The Journal of the Pakistan Medical Association, 2017, 67(9): 1313–1317.
    [22] AKULA P, HUA Y, GU L X. Blast-induced mild traumatic brain injury through ear canal: a finite element study [J]. Biomedical Engineering Letters, 2015, 5(4): 281–288. DOI: 10.1007/s13534-015-0204-0.
    [23] SHUKER S T. Maxillofacial air-containing cavities, blast implosion injuries, and management [J]. Journal of Oral and Maxillofacial Surgery, 2010, 68(1): 93–100. DOI: 10.1016/j.joms.2009.07.077.
    [24] HAXEL B R, GRANT L, MACKAY-SIM A. Olfactory dysfunction after head injury [J]. Journal of Head Trauma Rehabilitation, 2008, 23(6): 407–413. DOI: 10.1097/01.htr.0000341437.59627.ec.
    [25] XYDAKIS M S, MULLIGAN L P, SMITH A B, et al. Olfactory impairment and traumatic brain injury in blast-injured combat troops: a cohort study [J]. Neurology, 2015, 84(15): 1559–1567. DOI: 10.1212/WNL.0000000000001475.
    [26] AKULA P K, HUA Y, GU L X. Role of frontal sinus on primary blast-induced traumatic brain injury [J]. Journal of Medical Devices, 2013, 7(3): 030925. DOI: 10.1115/1.4024492.
    [27] DEMAR J, SHARROW K, HILL M, et al. Effects of primary blast overpressure on retina and optic tract in rats [J]. Frontiers in Neurology, 2016, 7: 59. DOI: 10.3389/fneur.2016.00059.
    [28] KOLIATSOS V E, CERNAK I, XU L Y, et al. A mouse model of blast injury to brain: initial pathological, neuropathological, and behavioral characterization [J]. Journal of Neuropathology & Experimental Neurology, 2011, 70(5): 399–416. DOI: 10.1097/NEN.0b013e3182189f06.
    [29] WANG H C H, CHOI J H, GREENE W A, et al. Pathophysiology of blast-induced ocular trauma with apoptosis in the retina and optic nerve [J]. Military Medicine, 2014, 179(S8): 34–40. DOI: 10.7205/MILMED-D-13-00504.
    [30] CHOI J H, GREENE W A, JOHNSON A J, et al. Pathophysiology of blast-induced ocular trauma in rats after repeated exposure to low-level blast overpressure [J]. Clinical & Experimental Ophthalmology, 2015, 43(3): 239–246. DOI: 10.1111/ceo.12407.
    [31] FIEVISOHN E, BAILEY Z, GUETTLER A, et al. Primary blast brain injury mechanisms: current knowledge, limitations, and future directions [J]. Journal of Biomechanical Engineering, 2018, 140(2): 020806. DOI: 10.1115/1.4038710.
    [32] ZHU F, CHOU C C, YANG K H, et al. A theoretical analysis of stress wave propagation in the head under primary blast loading [J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2014, 228(5): 439–445. DOI: 10.1177/0954411914530882.
    [33] NYEIN M K, JASON A M, YU L, et al. Reply to Moss et al: military and medically relevant models of blast-induced traumatic brain injury vs. ellipsoidal heads and helmets [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(17): E83. DOI: 10.1073/pnas.1102626108.
    [34] ROMBA J J, MARTIN P. The propagation of air shock waves on a biophysical model: TM-17-61 [R]. Aberdeen: Human Engineering Lab Aberdeen Proving Ground, 1961.
    [35] MOSS W C, KING M J, BLACKMAN E G. Skull flexure from blast waves: a mechanism for brain injury with implications for helmet design [J]. Physical Review Letters, 2009, 103(10): 108702. DOI: 10.1103/PhysRevLett.103.108702.
    [36] BOLANDER H G, PERSSON L, HILLERED L, et al. Regional cerebral blood flow and histopathologic changes after middle cerebral artery occlusion in rats [J]. Stroke, 1989, 20(7): 930–937. DOI: 10.1161/01.STR.20.7.930.
    [37] LI Z J, DU Z B, YOU X C, et al. Numerical study on dynamic mechanism of brain volume and shear deformation under blast loading [J]. Acta Mechanica Sinica, 2019, 35(5): 1104–1119. DOI: 10.1007/s10409-019-00875-w.
    [38] OEHMICHEN M, MEISSNER C, KÖNIG H G. Brain injury after gunshot wounding: morphometric analysis of cell destruction caused by temporary cavitation [J]. Journal of Neurotrauma, 2000, 17(2): 155–162. DOI: 10.1089/neu.2000.17.155.
    [39] XI X F, ZHONG P. Dynamic photoelastic study of the transient stress field in solids during shock wave lithotripsy [J]. The Journal of the Acoustical Society of America, 2001, 109(3): 1226–1239. DOI: 10.1121/1.1349183.
    [40] HONG Y, SARNTINORANONT M, SUBHASH G, et al. Localized tissue surrogate deformation due to controlled single bubble cavitation [J]. Experimental Mechanics, 2016, 56(1): 97–109. DOI: 10.1007/s11340-015-0024-2.
    [41] PANZER M B, MYERS B S, CAPEHART B P, et al. Development of a finite element model for blast brain injury and the effects of CSF cavitation [J]. Annals of Biomedical Engineering, 2012, 40(7): 1530–1544. DOI: 10.1007/s10439-012-0519-2.
    [42] CRAMER Ⅲ H C, ESTRADA J B, SCIMONE M T, et al. Inertial microcavitation as a neural cell damage mechanism in a 3D in vitro model of blast traumatic brain injury [J]. Biophysical Journal, 2018, 114(3): 518A. DOI: 10.1016/j.bpj.2017.11.2828.
    [43] GOELLER J, WARDLAW A, TREICHLER D, et al. Investigation of cavitation as a possible damage mechanism in blast-induced traumatic brain injury [J]. Journal of Neurotrauma, 2012, 29(10): 1970–1981. DOI: 10.1089/neu.2011.2224.
    [44] SALZAR R S, TREICHLER D, WARDLAW A, et al. Experimental investigation of cavitation as a possible damage mechanism in blast-induced traumatic brain injury in post-mortem human subject heads [J]. Journal of Neurotrauma, 2017, 34(8): 1589–1602. DOI: 10.1089/neu.2016.4600.
    [45] BHATTACHARJEE Y. Shell shock revisited: solving the puzzle of blast trauma [J]. Science, 2008, 319(5862): 406–408. DOI: 10.1126/science.319.5862.406.
    [46] CHEN Y, HUANG W. Non-impact, blast-induced mild TBI and PTSD: concepts and caveats [J]. Brain Injury, 2011, 25(7/8): 641–650. DOI: 10.3109/02699052.2011.580313.
    [47] GANPULE S, ALAI A, PLOUGONVEN E, et al. Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches [J]. Biomechanics and Modeling in Mechanobiology, 2013, 12(3): 511–531. DOI: 10.1007/s10237-012-0421-8.
    [48] BAIN A C, MEANEY D F. Tissue-level thresholds for axonal damage in an experimental model of central nervous system white matter injury [J]. Journal of Biomechanical Engineering, 2000, 122(6): 615–622. DOI: 10.1115/1.1324667.
    [49] WRIGHT R M, POST A, HOSHIZAKI B, et al. A multiscale computational approach to estimating axonal damage under inertial loading of the head [J]. Journal of Neurotrauma, 2013, 30(2): 102–118. DOI: 10.1089/neu.2012.2418.
    [50] GIORDANO C, KLEIVEN S. Connecting fractional anisotropy from medical images with mechanical anisotropy of a hyperviscoelastic fibre-reinforced constitutive model for brain tissue [J]. Journal of the Royal Society Interface, 2014, 11(91): 20130914. DOI: 10.1098/rsif.2013.0914.
    [51] GUPTA R K, TAN X G, SOMAYAJI M R, et al. Multiscale modelling of blast-induced TBI mechanobiology—from body to neuron to molecule [J]. Defence Life Science Journal, 2017, 2(1): 3–13. DOI: 10.14429/dlsj.2.10369.
    [52] WARD C, CHAN M, NAHUM A. Intracranial pressure—a brain injury criterion [J]. SAE Transactions, 1980: 3867–3880. https://www.jstor.org/stable/44632636.
    [53] RODRÍGUEZ-MILLÁN M, TAN L B, TSE K N, et al. Effect of full helmet systems on human head responses under blast loading [J]. Materials & Design, 2017, 117: 58–71. DOI: 10.1016/j.matdes.2016.12.081.
    [54] GARCIA-GONZALEZ D, RACE N S, VOETS N L, et al. Cognition based bTBI mechanistic criteria; a tool for preventive and therapeutic innovations [J]. Scientific Reports, 2018, 8(1): 10273. DOI: 10.1038/s41598-018-28271-7.
    [55] KALRA A, ZHU F, FENG K, et al. Development and validation of a numerical model of the swine head subjected to open-field blasts [J]. Shock Waves, 2017, 27(6): 947–964. DOI: 10.1007/s00193-017-0760-6.
    [56] ZHU F, CHOU C C, YANG K H, et al. Some considerations on the threshold and inter-species scaling law for primary blast-induced traumatic brain injury: a semi-analytical approach [J]. Journal of Mechanics in Medicine and Biology, 2013, 13(4): 1350065. DOI: 10.1142/S0219519413500656.
    [57] ZHU F, SKELTON P, CHOU C C, et al. Biomechanical responses of a pig head under blast loading: a computational simulation [J]. International Journal for Numerical Methods in Biomedical Engineering, 2013, 29(3): 392–407. DOI: 10.1002/cnm.2518.
    [58] ZHU F, WAGNER C, DAL CENGIO LEONARDI A, et al. Using a gel/plastic surrogate to study the biomechanical response of the head under air shock loading: a combined experimental and numerical investigation [J]. Biomechanics and Modeling in Mechanobiology, 2012, 11(3): 341–353. DOI: 10.1007/s10237-011-0314-2.
    [59] ZHU F, MAO H, LEONARDI A D C, et al. Development of an FE model of the rat head subjected to air shock loading [J]. Stapp Car Crash Journal, 2010, 54: 211. DOI: 10.4271/2010-22-0011.
    [60] BASS C R, PANZER M B, RAFAELS K A, et al. Brain injuries from blast [J]. Annals of Biomedical Engineering, 2012, 40(1): 185–202. DOI: 10.1007/s10439-011-0424-0.
    [61] COURTNEY M W, COURTNEY A C. Working toward exposure thresholds for blast-induced traumatic brain injury: thoracic and acceleration mechanisms [J]. Neuroimage, 2011, 54(S1): S55-S61. DOI: 10.1016/j.neuroimage.2010.05.025.
    [62] 栗志杰, 由小川, 柳占立, 等. 一种物理头部模型和测试系统: CN201810055338.5 [P]. 2018-06-15.

    LI Z J, YOU X C, LIU Z L, et al. Physical head model and test system: CN201810055338.5 [P]. 2018-06-15.
    [63] NEMAT-NASSER S, AMIRKHIZI A, HOLZWORTH K, et al. Modification and engineering of HSREP to achieve unique properties: block copolymer-based multiscale composites for shock mitigation [J]. Elastomeric Polymers with High Rate Sensitivity: Applications in Blast, Shockwave, and Penetration Mechanics, 2015: 319–335. DOI: 10.1016/B978-0-323-35400-4.00009-X.
    [64] LI J T, MA T, HUANG C, et al. Protective mechanism of helmet under far-field shock wave [J]. International Journal of Impact Engineering, 2020, 143: 103617. DOI: 10.1016/j.ijimpeng.2020.103617.
    [65] LIU M D, ZHANG C, LIU W B, et al. A novel rat model of blast-induced traumatic brain injury simulating different damage degree: implications for morphological, neurological, and biomarker changes [J]. Frontiers in Cellular Neuroscience, 2015, 9: 168. DOI: 10.3389/fncel.2015.00168.
    [66] RUBOVITCH V, TEN-BOSCH M, ZOHAR O, et al. A mouse model of blast-induced mild traumatic brain injury [J]. Experimental Neurology, 2011, 232(2): 280–289. DOI: 10.1016/j.expneurol.2011.09.018.
    [67] DAVIDSSON J, ANGERIA M, RISLING M. Injury threshold for sagittal plane rotational induced diffuse axonal injuries[C] // Proceedings of the International Research Conference on the Biomechanics of Impact (IRCOBI). York, UK: SAE, 2009: 43–56.
    [68] RISLING M, SKÖLD M, LARSSON I L, et al. Leakage of S-100 protein after high velocity penetration injury to the brain [C]// Proceedings of the 7th International Neurotrauma Symposium. Adelaide: Medimond, 2004: 119–124.
    [69] CHENG J M, GU J W, MA Y, et al. Development of a rat model for studying blast-induced traumatic brain injury [J]. Journal of the Neurological Sciences, 2010, 294(1/2): 23–28. DOI: 10.1016/j.jns.2010.04.010.
    [70] AGOSTON D V, ELSAYED M. Serum-based protein biomarkers in blast-induced traumatic brain injury spectrum disorder [J]. Frontiers in Neurology, 2012, 3: 107. DOI: 10.3389/fneur.2012.00107.
    [71] D’HOOGE R, DE DEYN P P. Applications of the Morris water maze in the study of learning and memory [J]. Brain Research Reviews, 2001, 36(1): 60–90. DOI: 10.1016/S0165-0173(01)00067-4.
    [72] MORRIS R G M, GARRUD P, RAWLINS J N P, et al. Place navigation impaired in rats with hippocampal lesions [J]. Nature, 1982, 297(5868): 681–683. DOI: 10.1038/297681a0.
    [73] FRANKLYN M, LEE P V S. Military injury biomechanics: the cause and prevention of impact injuries [M]. Boca Raton: CRC Press, 2017.
    [74] OJO J O, MOUZON B, ALGAMAL M, et al. Chronic repetitive mild traumatic brain injury results in reduced cerebral blood flow, axonal injury, gliosis, and increased T-tau and tau oligomers [J]. Journal of Neuropathology & Experimental Neurology, 2016, 75(7): 636–655. DOI: 10.1093/jnen/nlw035.
    [75] LEE J, JING B B, PORATH L E, et al. Shock wave energy dissipation in catalyst-free poly (dimethylsiloxane) vitrimers [J]. Macromolecules, 2020, 53(12): 4741–4747. DOI: 10.1021/acs.macromol.0c00784.
    [76] SARVA S S, DESCHANEL S, BOYCE M C, et al. Stress-strain behavior of a polyurea and a polyurethane from low to high strain rates [J]. Polymer, 2007, 48(8): 2208–2213. DOI: 10.1016/j.polymer.2007.02.058.
    [77] PONTALIER Q, LHOUMEAU M, FROST D L. Blast wave mitigation in granular materials [J]. AIP Conference Proceedings, 2018, 1979(1): 110014. DOI: 10.1063/1.5044933.
    [78] GRUJICIC M, RAMASWAMI S, SNIPES J S, et al. RETRACTED: potential improvement in helmet blast-protection via the use of a polyurea external coating: combined experimental/computational analyses [J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2020, 234(3): 337–367. DOI: 10.1177/1464420716644472.
    [79] JENSON D, UNNIKRISHNAN V. Multiscale simulation of ballistic composites for blast induced traumatic brain injury mitigation [C] // Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition. Montreal: American Society of Mechanical Engineers, 2014. DOI: 10.1115/IMECE2014-40262.
    [80] SINGH D, CRONIN D S. Efficacy of visor and helmet for blast protection assessed using a computational head model [J]. Shock Waves, 2017, 27(6): 905–918. DOI: 10.1007/s00193-017-0732-x.
    [81] ZHANG T G, SATAPATHY S S. Effect of helmet pads on the load transfer to head under blast loadings [C] // Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition. Montreal: American Society of Mechanical Engineers, 2014. DOI: 10.1115/IMECE2014-37143.
    [82] VALVERDE-MARCOS B, RUBIO I, ANTONA-MAKOSHI J, et al. Numerical analysis of EOD helmet under blast load events using human head model [J]. Applied Sciences, 2020, 10(22): 8227. DOI: 10.3390/app10228227.
    [83] TSE K M, TAN L B, SAPINGI M A B, et al. The role of a composite polycarbonate-aerogel face shield in protecting the human brain from blast-induced injury: a fluid-structure interaction (FSI) study [J]. Journal of Sandwich Structures & Materials, 2019, 21(7): 2484–2511. DOI: 10.1177/1099636217733369.
  • 加载中
图(27) / 表(3)
计量
  • 文章访问数:  711
  • HTML全文浏览量:  389
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-03
  • 修回日期:  2021-12-20
  • 网络出版日期:  2022-03-29
  • 刊出日期:  2022-05-09

目录

    /

    返回文章
    返回