Influences of material properties of a projectile on hypervelocity penetration depth
-
摘要: 为研究弹体材料参数(主要指屈服强度、韧性等)对超高速侵彻混凝土靶侵彻深度的影响规律,开展了不同材料性能的93W钨合金柱形弹以
2300 ~3600 m/s的速度侵彻混凝土靶实验,得到了不同材料性能弹体的侵彻深度和残余弹体长度实验数据,并结合已有文献中的实验结果以及数值模拟方法,分析了材料参数对侵彻深度、残余弹体长度的影响规律。得到的结论如下:(1)如果弹体材料的韧性增强而强度不变,残余弹体特征参数并未显著改变,侵彻深度无显著变化,侵彻深度极大值对应的弹速也无显著变化;(2)如果弹体材料的强度提高而韧性不变,则弹体抵抗侵蚀的能力提升,使弹体残余长度增加,侵彻阶段的临界转变速度增加,进而使刚体侵彻深度和总侵深增加,同时使弹体侵彻深度极大值对应的侵彻速度提高。Abstract: In order to study the influence of projectile material parameters (mainly strength, toughness, etc.) on the penetration depth of hypervelocity penetrating concrete targets, experiments of 93W tungsten alloy column-shaped projectiles with different material properties penetrating concrete targets at2300 –3600 m/s were carried out on a 57/10 two-stage light gas gun. The projectile velocity was measured by a laser velocimetry system, of which the uncertainty is less than 1%. The experimental data of penetration depth and residual projectile length of different projectiles were obtained by computed tomography (CT) diagnosis technology, which can achieve a measurement accuracy of 0.1 mm. Combined with the experimental results and numerical simulation of Euler type finite element method in the literature, the influences of material parameters on the penetration depth and length of the residual projectile at different impact velocities were analyzed. Numerical simulation was carried out based on the AUTODYN software. In the simulation process, tungsten alloy was described by the Grüneisen equation of state and Steinberg constitutive model, while concrete was described by the pressure-porosity equation of state and RHT dynamic damage constitutive model. The conclusions obtained are as follows. (1) If the toughness of the projectile material increases and the strength does not change, the characteristic parameters of the residual projectile, the penetration depth, and the velocity of the corresponding maximum penetration depth do not change significantly. (2) If the strength of the projectile material increases and the toughness is constant, the ability of the projectile to resist erosion can be enhanced, the residual length of the projectile increases, and the critical transition speed increases, thereby increasing the rigid penetration depth and total penetration depth. At the same time, the velocity corresponding to the maximum value of the projectile penetration depth increases.-
Key words:
- hypervelocity /
- penetration /
- tungsten alloy projectile /
- strength /
- toughness /
- concrete /
- two-stage light gas gun
-
表 1 3种弹体的材料性能参数
Table 1. Material performance parameters of three kinds of projectiles
表 2 Ⅰ型弹体(高韧性93W钨合金)超高速侵彻混凝土靶成坑数据
Table 2. Crater data of Type Ⅰ projectile (high-toughness 93W) penetrating concrete targets at hypervelocities
实验编号 撞击速度/(m∙s−1) 攻角/(°) 侵彻深度/mm 弹坑直径/mm 弹体余长/mm 弹体余长误差/mm 1-1 2390 4 81.0 120.0 4.8 1.2 1-2 2740 6 86.0 112.1 4.6 1.2 1-3 2990 8 75.0 130.0 2.7 1.3 1-4 3310 0 69.9 142.8 0 0 1-5 3580 6 64.1 144.5 0 0 表 3 Ⅱ型弹体(高强度93W钨合金)超高速侵彻混凝土靶成坑数据
Table 3. Crater data of Type Ⅱ projectile (high strength 93W) penetrating concrete targets at hypervelocities
实验编号 撞击速度/(m∙s−1) 攻角/(°) 侵彻深度/mm 弹坑直径/mm 弹体余长/mm 弹体余长误差/mm 2-1 2330 4 79.2 117.0 6.1 1.3 2-2 2680 5 84.6 120.8 5.1 1.2 2-3 2910 0 87.1 125.6 4.1 1.2 2-4 3350 0 82.4 145.3 3.4 1.2 2-5 3500 7 67.6 132.5 0 0 表 4 Ⅲ型弹体(标准93W钨合金)超高速侵彻混凝土靶成坑数据[8]
Table 4. Crater data of type Ⅲ projectiles (standard 93W) penetrating concrete targets at hypervelocities[8]
实验编号 撞击速度/(m∙s−1) 攻角/(°) 侵彻深度/mm 弹坑直径/mm 弹体余长/mm 弹体余长误差/mm 3-1 1820 7 67.0 3-2 1970 4 69.8 104.5 6.2 1.1 3-3 2020 5 80.6 103.3 6.7 1.2 3-4 2350 0 84.2 101.6 4.9 1.4 3-5 2390 4 82.5 105.5 5.6 0.1 3-6 2610 2 85.9 117.0 4.5 1.1 3-7 2660 0 84.0 115.9 4.2 0.1 3-8 2860 5 84.1 112.0 4.4 1.3 3-9 2900 4 76.7 105.9 3.2 1.4 3-10 3080 8 66.5 127.7 0 0 3-11 3190 0 68.0 128.0 0 0 3-12 3360 0 63.8 131.9 0 0 3-13 3360 4 61.0 144.5 0 0 3-14 3460 5 65.0 136.7 0 0 3-15 3660 7 58.3 141.4 0 0 注:实验3-1因靶体未加钢箍,破碎较严重,无法观测残余弹体 表 5 最大侵深时3种弹体毁伤参数的对比
Table 5. Comparison of the damage parameters for three types of projectiles at the maximum penetration depth
弹体 撞击速度/(m∙s−1) 侵彻深度/mm 弹坑直径/mm 弹体余长/mm I型弹 2740 86.0 112.18 4.6 II型弹 2910 87.1 125.6 4.1 III型弹[8] 2610 85.9 117.0 4.5 表 6 标准93W钨合金材料模型参数
Table 6. Material model parameters of standard 93W tungsten alloy
ρ/(kg·m−3) G0/GPa σys/GPa Tm0/K C/(m·s−1) S1 A 17600 160 1.5 2 766 4 040 1.23 183.85 (G′p·G0)/GPa−1 (G′T·G0)/K−1 β n γ0 a' σm/GPa 0.0094 0.00014 7.7 0.13 1.67 1.3 6 表 7 混凝土的材料模型参数
Table 7. Material parameters of concrete
G0/GPa fc/MPa ft/fc fs/fc A B ρ/(kg·m−3) M D1 D2 $ {\varepsilon }_{\mathrm{f}}^{\mathrm{min}} $ N 16.7 42.7 0.1 0.18 1.4 1.4 2.2 0.5 0.04 1 0.01 0.5 -
[1] GOLD V M, VRADIS G C, PEARSON J C. Concrete penetration by eroding projectiles: experiments and analysis [J]. Journal of Engineering Mechanics, 1996, 122(2): 145–152. DOI: 10.1061/(ASCE)0733-9399(1996)122:2(145). [2] 王明洋, 邱艳宇, 李杰, 等. 超高速长杆弹对岩石侵彻、地冲击效应理论与实验研究 [J]. 岩石力学与工程学报, 2018, 37(3): 564–572. DOI: 10.13722/j.cnki.jrme.2017.1348.WANG M Y, QIU Y Y, LI J, et al. Theoretical and experimental study on penetration in rock and ground impact effects of long rod projectiles of hyper speed [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 564–572. DOI: 10.13722/j.cnki.jrme.2017.1348. [3] 李干, 宋春明, 邱艳宇, 等. 超高速弹对花岗岩侵彻深度逆减现象的理论与实验研究 [J]. 岩石力学与工程学报, 2018, 37(1): 60–66. DOI: 10.13722/j.cnki.jrme.2017.0584.LI G, SONG C M, QIU Y Y, et al. Theoretical and experimental studies on the phenomenon of reduction in penetration depth of hyper-velocity projectiles into granite [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 60–66. DOI: 10.13722/j.cnki.jrme.2017.0584. [4] 程怡豪, 邓国强, 李干, 等. 分层地质类材料靶体抗超高速侵彻模型实验 [J]. 爆炸与冲击, 2019, 39(7): 073301. DOI: 10.11883/bzycj-2018-0230.CHENG Y H, DENG G Q, LI G, et al. Model experiments on penetration of layered geological material targets by hypervelocity rob projectiles [J]. Explosion and Shock Waves, 2019, 39(7): 073301. DOI: 10.11883/bzycj-2018-0230. [5] 牛雯霞, 黄洁, 柯发伟, 等. 混凝土房屋结构靶的超高速撞击特性研究 [J]. 实验流体力学, 2014, 28(2): 79–84. DOI: 10.11729/syltlx2014pz38.NIU W X, HUANG J, KE F W, et al. Research on Hypervelocity impact characteristics of concrete building structures target [J]. Journal of Experiments in Fluid Mechanics, 2014, 28(2): 79–84. DOI: 10.11729/syltlx2014pz38. [6] 张浩, 张庆明. 铝弹丸超高速撞击混凝土介质冲击熔化研究 [C]//北京力学会第20届学术年会论文集. 北京: 北京力学会, 2014: 263–264.ZHANG H, ZHANG Q M. Study on hypervelocity impact melting of aluminum projectile into concrete targets [C]//Proceedings of the 20th Annual Meeting of the Beijing Society of Mechanics. Beijing: Beijing Society of Theoretical and Applied Mechanics, 2014: 263–264. [7] 钱秉文, 周刚, 李进, 等. 钨合金弹体超高速撞击混凝土靶成坑特性研究 [J]. 北京理工大学学报, 2018, 38(10): 1012–1017. DOI: 10.15918/j.tbit1001-0645.2018.10.004.QIAN B W, ZHOU G, LI J, et al. Study of the crater produced by hypervelocity tungsten alloy projectile into concrete target [J]. Transactions of Beijing Institute of Technology, 2018, 38(10): 1012–1017. DOI: 10.15918/j.tbit1001-0645.2018.10.004. [8] 钱秉文, 周刚, 李进, 等. 钨合金柱形弹超高速撞击水泥砂浆靶的侵彻深度研究 [J]. 爆炸与冲击, 2019, 39(8): 083301. DOI: 10.11883/bzycj-2019-0141.QIAN B W, ZHOU G, LI J, et al. Penetration depth of hypervelocity tungsten alloy projectile penetrating concrete target [J]. Explosion and Shock Waves, 2019, 39(8): 083301. DOI: 10.11883/bzycj-2019-0141. [9] ANTOUN T H, GLENN L A, WALTON O R, et al. Simulation of hypervelocity penetration in limestone [J]. International Journal of Impact Engineering, 2006, 33(1): 45–52. DOI: 10.1016/j.ijimpeng.2006.09.009. [10] 邓国强, 杨秀敏. 超高速武器对地打击效应数值仿真 [J]. 科技导报, 2015, 33(16): 65–71. DOI: 10.3981/j.issn.1000-7857.2015.16.010.DENG G Q, YANG X M. Numerical simulation of damage effect of hypervelocity weapon on ground target [J]. Science & Technology Review, 2015, 33(16): 65–71. DOI: 10.3981/j.issn.1000-7857.2015.16.010. [11] 章程浩, 沈培辉. 易碎穿甲弹材料性能研究 [J]. 兵器装备工程学报, 2016, 37(7): 144–148. DOI: 10.11809/scbgxb2016.07.031.ZHANG C H, SHEN P H. Study on behavior of materials used in fragile penetrator [J]. Journal of Ordnance Equipment Engineering, 2016, 37(7): 144–148. DOI: 10.11809/scbgxb2016.07.031. [12] 张德志, 唐润棣, 林俊德, 等. 新型气体驱动二级轻气炮研制 [J]. 兵工学报, 2004, 25(1): 14–18. DOI: 10.3321/j.issn:1000-1093.2004.01.004.ZHANG D Z, TANG R D, LIN J D, et al. Development of a new type gas-driven two-stage light gas gun [J]. Acta Armamentarii, 2004, 25(1): 14–18. DOI: 10.3321/j.issn:1000-1093.2004.01.004. [13] 钱秉文. 钨合金弹体超高速撞击混凝土靶实验研究和机理探索 [D]. 北京: 清华大学, 2016.QIAN B W. Experiment study and mechanism exploration of hypervelocity impact of tungsten alloy projectile into concrete target [D]. Beijing: Tsinghua University, 2016. [14] ORPHAL D L. Phase three penetration [J]. International Journal of Impact Engineering, 1997, 20(6): 601–616. DOI: 10.1016/S0734-743X(97)87448-9. [15] ZUKAS J A. High velocity impact dynamics [M]. New York: Wiley, 1990. [16] TATE A. Long rod penetration models: Part Ⅱ: extensions to the hydrodynamic theory of penetration [J]. International Journal of Mechanical Sciences, 1986, 28(9): 599–612. DOI: 10.1016/0020-7403(86)90075-5. [17] RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA2B2500 numerical analysis using a new macroscopic concrete model for hydrocodes [C] // Proceedings of 9th International Symposium on Interaction of the Effects of Munitions with Structures. Berlin-Strausberg: IBMAC, 1999: 315−322. [18] Livermore Software Technology Corporation. LS-DYNA keywords user’s manual (version 971/Rev5) [M]. California: Livermore Software Technology Corporation, 2010.