基于立方型气体状态方程的激波风洞准一维流动数值研究

张洲铭 李贤 朱雨建 李祝飞 龚红明 罗喜胜

张洲铭, 李贤, 朱雨建, 李祝飞, 龚红明, 罗喜胜. 基于立方型气体状态方程的激波风洞准一维流动数值研究[J]. 爆炸与冲击, 2024, 44(2): 023201. doi: 10.11883/bzycj-2023-0184
引用本文: 张洲铭, 李贤, 朱雨建, 李祝飞, 龚红明, 罗喜胜. 基于立方型气体状态方程的激波风洞准一维流动数值研究[J]. 爆炸与冲击, 2024, 44(2): 023201. doi: 10.11883/bzycj-2023-0184
ZHANG Zhouming, LI Xian, ZHU Yujian, LI Zhufei, GONG Hongming, LUO Xisheng. Quasi-one-dimensional numerical study of shock tunnel flows based on cubic equations of state[J]. Explosion And Shock Waves, 2024, 44(2): 023201. doi: 10.11883/bzycj-2023-0184
Citation: ZHANG Zhouming, LI Xian, ZHU Yujian, LI Zhufei, GONG Hongming, LUO Xisheng. Quasi-one-dimensional numerical study of shock tunnel flows based on cubic equations of state[J]. Explosion And Shock Waves, 2024, 44(2): 023201. doi: 10.11883/bzycj-2023-0184

基于立方型气体状态方程的激波风洞准一维流动数值研究

doi: 10.11883/bzycj-2023-0184
基金项目: 国家自然科学基金(12172354,U21B6003)
详细信息
    作者简介:

    张洲铭(1998- ),男,博士研究生,zzm2016@mail.ustc.edu.cn

    通讯作者:

    朱雨建(1979- ),男,博士,高级工程师,yujianrd@ustc.edu.cn

  • 中图分类号: O354.7

Quasi-one-dimensional numerical study of shock tunnel flows based on cubic equations of state

  • 摘要: 采用基于立方型气体状态方程的准一维流动数值模拟方法研究了反射式高焓激波风洞的真实气体流动,重点关注了高压真实气体效应对风洞全场流动时空结构和驻室区气流参数的影响,并以理论分析揭示了高压真实气体效应对激波管内流动的作用机理。研究表明:对于以冷高压气体驱动的激波风洞,使用考虑分子体积和分子间作用力的真实气体状态方程能够更准确地描述气体的状态和风洞内的流动状况。高压真实气体效应主要在冷驱动气体中发生作用,其作用效果主要是使当地声速增大,从而使得入射稀疏波和反射稀疏波的传播速度加快;另一方面,高压气体效应在高温气体效应较显著的被驱动气体中作用微弱,且对激波管产生激波的强度和激波后的流动状态影响甚微。稀疏波的加快传播改变了激波管波系的相干时空关系。提前抵达的稀疏波可在一定情况下侵蚀激波风洞的有效试验时间。对于所测试的激波风洞构型,在150 MPa氢气驱动110 kPa氮气的工况下,高压效应导致的有效试验时间缩短约38%。适当加长驱动段长度和采用高温气体驱动均可有效减弱高压真实气体效应的影响。
  • 图  1  FD-14A激波风洞[17]内流道结构示意图

    Figure  1.  Configuration of the inner flow channel of the FD-14A shock tunnel[17]

    图  2  准一维数值模拟的激波沿程衰减情况与试验结果的对比

    Figure  2.  Comparison of shock attenuation between quasi-one-dimensional numerical simulations and tests

    图  3  不同状态方程下激波风洞驻室压强数值模拟结果与试验结果的对比

    Figure  3.  Comparison of numerically-simulated pressures in the stagnation zone of a shock tunnel based on different equations of state with the experimental results

    图  4  不同混合规则下300 K氢-氮混合气体可压缩性随压强的变化

    Figure  4.  Variations of compressibility factors with pressure for hydrogen-nitrogen mixture at 300 K under different mixing rules

    图  5  不同状态方程300 K氢气可压缩性因子随压强的变化

    Figure  5.  Variation of compressibility factor with pressure for hydrogen at 300 K with different equations of state

    图  6  不同状态方程300 K氢气声速随压强的变化

    Figure  6.  Variation of sound speed with pressure for hydrogen at 300 K with different equations of state

    图  7  激波风洞全场压强x-t云图(理想气体状态方程)

    Figure  7.  x-t diagram of pressure contour in the shock tunnel with ideal gas state equation

    图  8  激波风洞全场温度x-t云图(理想气体状态方程)

    Figure  8.  x-t diagram of temperature contour in the shock tunnel with ideal gas state equation

    图  9  激波风洞全场压强x-t云图(PR状态方程)

    Figure  9.  x-t diagram of pressure contour in the shock tunnel with PR state equation

    图  10  激波风洞全场温度x-t云图(PR状态方程)

    Figure  10.  x-t diagram of temperature contour in the shock tunnel with PR state equation

    图  11  激波管内波系运动速度沿程分布

    Figure  11.  Velocities of waves along the shock tube

    图  12  激波风洞驻室参数随时间变化情况

    Figure  12.  Parameters changing with time in the stagnation zone of the shock tunnel

    图  13  分子体积和分子间作用力对氢气声速的影响因子随压强的变化

    Figure  13.  Influencing factors of molecular volume and intermolecular force on the sound speed of hydrogen changing with pressure

    图  14  激波管流动波系和区域示意图

    Figure  14.  Schematic diagram of wave system and flow regions in the shock tube

    图  15  不同状态方程下激波管区域②和区域③气流的p-u曲线

    Figure  15.  p-u diagrams of the flows in regions ② and ③ of the shock tube for different equations of state

    图  16  不同压缩过程高压气体效应的影响程度

    Figure  16.  Influences of high pressure gas effect in different compression processes

    图  17  理想和PR状态方程下不同初始压强配置所产生的入射激波马赫数

    Figure  17.  Mach numbers of incident shock waves produced under different initial pressure conditions with ideal and PR equations of state

    图  18  不同状态方程下激波管区域② 和区域③气流的c-u曲线

    Figure  18.  c-u diagrams of the flows in regions ② and ③ of the shock tube for different equations of state

    图  19  不同状态方程下各个波系到达时刻随总压的变化

    Figure  19.  Arrival times of waves changing with total pressure under different equations of state

    图  20  不同总温、总压条件下高压气体效应对试验时间的影响

    Figure  20.  Influences of the high-pressure gas effects on test time under different total pressure and temperature conditions

    表  1  激波风洞运行典型工况

    Table  1.   Typical operating conditions of the shock tunnel

    管段 压强/Pa 温度/K 初始组分 长度/m
    驱动段 5×107 300 氢气 9
    被驱动段 1×105 空气 18
    喷管 1 空气 7.5
    下载: 导出CSV

    表  2  激波风洞运行工况

    Table  2.   Operating conditions of shock tunnel

    管段压强/Pa温度/K初始组分长度/m
    驱动段15×107300氢气9.0
    被驱动段11×104氮气18.0
    喷管10氮气7.5
    下载: 导出CSV

    表  3  各个波系到达驻室入口时刻

    Table  3.   Arrival time of each wave to stagnation zone

    方程 ${t_1}$/ms ${t_2}$/ms ${t_3}$/ms ${t_{{\text{eff}}}}$/ms
    理想气体状态方程 6.8 20.6 17.2 10.4
    PR状态方程 7.1 13.5 25.5 6.4
    下载: 导出CSV

    表  4  激波风洞试验气流名义总温对应的初始压比和驱动气体氮气摩尔分数

    Table  4.   Initial pressure ratios and molar fractions of nitrogen in driver gas corresponding to different nominal total temperatures of test flow in the shock tunnel

    总温/K 初始压比 氮气摩尔分数/%
    2000 176.5 15.0
    3000 444.4 9.5
    4000 800.0 5.0
    5000 1272.7 1.8
    6000 1600.0 0
    下载: 导出CSV
  • [1] ANDERSON J D JR. Hypersonic and high-temperature gas dynamics [M]. 2nd ed. Reston, Virginia, USA: AIAA, 2006: 449–461. DOI: 10.2514/4.861956.
    [2] VAN DER WAALS J D. On the continuity of the gaseous and liquid state [D]. Leiden, Holland: University of Leiden, 1873.
    [3] JACOBS P A. Quasi-one-dimensional modeling of a free-piston shock tunnel [J]. AIAA Journal, 1994, 32(1): 137–145. DOI: 10.2514/3.11961.
    [4] BOYCE R R, TAKAHASHI M, STALKER R J. Mass spectrometric measurements of driver gas arrival in the T4 free-piston shock-tunnel [J]. Shock Waves, 2005, 14(5/6): 371–378. DOI: 10.1007/s00193-005-0276-3.
    [5] HANNEMANN K. High enthalpy flows in the HEG shock tunnel: experiment and numerical rebuilding [C]//41st Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2003: 978. DOI: 10.2514/6.2003-978.
    [6] JOHNSTON I, WEILAND M, SCHRAMM J, et al. Aerothermodynamics of the ARD-Postflight numerics and shock-tunnel experiments [C]//40th AIAA Aerospace Sciences Meeting & Exhibit. Reno: AIAA, 2002: 407. DOI: 10.2514/6.2002-407.
    [7] HOLDEN M, WADHAMS T, MACLEAN M, et al. Experimental studies in LENS I and X to evaluate real gas effects on hypevelocity vehicle performance [C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2007: 204. DOI: 10.2514/6.2007-204.
    [8] 卢洪波, 陈星, 曾宪政, 等. FD-21风洞 Ma=10高超声速推进试验技术探索 [J]. 气体物理, 2022, 7(2): 1–12. DOI: 10.19527/j.cnki.2096-1642.0926.

    LU H B, CHEN X, ZENG X Z, et al. Exploration of experimental techniques on Ma=10 scramjets in FD-21 high enthalpy shock tunnel [J]. Physics of Gases, 2022, 7(2): 1–12. DOI: 10.19527/j.cnki.2096-1642.0926.
    [9] LLOBET J R, YAMADA G, TONIATO P. Quasi-0D-model mapping of reflected shock tunnel operating conditions [J]. AIAA Journal, 2020, 58(4): 1668–1680. DOI: 10.2514/1.J058660.
    [10] LYNCH K P, GRASSER T, FARIAS P, et al. Design and characterization of the Sandia free-piston reflected shock tunnel [C]//AIAA SCITECH 2022 Forum. San Diego: AIAA, 2022: 0968. DOI: 10.2514/6.2022-0968.
    [11] GORDON S, MCBRIDE B J. Computer program for calculation of complex chemical equilibrium compositions and applications. Part 1: analysis: NASA RP-1311 [R]. Cleveland, Ohio, USA: NASA, 1996.
    [12] LUO K, WANG Q, LI J W, et al. Numerical modeling of a high-enthalpy shock tunnel driven by gaseous detonation [J]. Aerospace Science and Technology, 2020, 104: 105958. DOI: 10.1016/j.ast.2020.105958.
    [13] MACLEAN M, WADHAMS T, HOLDEN M, et al. Investigation of blunt bodies with CO2 test gas including catalytic effects [C]//38th AIAA Thermophysics Conference. Toronto: AIAA, 2005: 4693. DOI: 10.2514/6.2005-4693.
    [14] MACLEAN M, DUFRENE A, WADHAMS T, et al. Numerical and experimental characterization of high enthalpy flow in an expansion tunnel facility [C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando: AIAA, 2010: 1562. DOI: 10.2514/6.2010-1562.
    [15] CANDLER G. Hypersonic nozzle analysis using an excluded volume equation of state [C]//38th AIAA Thermophysics Conference. Toronto: AIAA, 2005: 5202. DOI: 10.2514/6.2005-5202.
    [16] SIRIGNANO W A. Compressible flow at high pressure with linear equation of state [J]. Journal of Fluid Mechanics, 2018, 843: 244–292. DOI: 10.1017/jfm.2018.166.
    [17] 王刚, 马晓伟, 江涛, 等. 前向空腔的弓形激波特性研究 [J]. 宇航学报, 2016, 37(8): 901–907. DOI: 10.3873/j.issn.1000-1328.2016.08.002.

    WANG G, MA X W, JIANG T, et al. Characteristics of bow shock for a forward-facing cavity [J]. Journal of Astronautics, 2016, 37(8): 901–907. DOI: 10.3873/j.issn.1000-1328.2016.08.002.
    [18] GROTH C P T, GOTTLIEB J J. Numerical study of two-stage light-gas hypervelocity projectile launchers: UTIAS Report 372 [R]. Toronto: University of Toronto Intsitute for Aerospace Studies, 1988.
    [19] WILKE C R. A viscosity equation for gas mixtures [J]. The Journal of Chemical Physics, 1950, 18(4): 517–519. DOI: 10.1063/1.1747673.
    [20] PARK C. Assessment of two-temperature kinetic model for ionizing air [J]. Journal of Thermophysics and Heat Transfer, 1989, 3(3): 233–244. DOI: 10.2514/3.28771.
    [21] MILLIKAN R C, WHITE D R. Systematics of vibrational relaxation [J]. The Journal of Chemical Physics, 1963, 39(12): 3209–3213. DOI: 10.1063/1.1734182.
    [22] GUPTA R N, YOS J M, THOMPSON R A. A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K: NASA TM-101528 [R]. Hampton: NASA, 1990.
    [23] DUNN M G, KANG S. Theoretical and experimental studies of reentry plasmas: NASA CR-2232 [R]. Buffalo, New York, USA: NASA, 1973.
    [24] TORO E F, SPRUCE M, SPEARES W. Restoration of the contact surface in the HLL-Riemann solver [J]. Shock Waves, 1994, 4(1): 25–34. DOI: 10.1007/bf01414629.
    [25] 侯自豪, 朱雨建, 薄靖龙, 等. 真空管道列车准一维气动特性 [J]. 机械工程学报, 2022, 58(6): 119–129. DOI: 10.3901/JME.2022.06.119.

    HOU Z H, ZHU Y J, BO J L, et al. Quasi-one-dimensional aerodynamic characteristics of tube train [J]. Journal of Mechanical Engineering, 2022, 58(6): 119–129. DOI: 10.3901/JME.2022.06.119.
    [26] HOU Z H, ZHU Y J, BO J L, et al. A quasi-one-dimensional study on global characteristics of tube train flows [J]. Physics of Fluids, 2022, 34(2): 026104. DOI: 10.1063/5.0080544.
    [27] YANG J T, ZHU Y J, YANG J M. Self-ignition induced by cylindrically imploding shock adapting to a convergent channel [J]. Physics of Fluids, 2017, 29(3): 031702. DOI: 10.1063/1.4979135.
    [28] 中国空气动力研究与发展中心超高速空气动力研究所, 中国科学技术大学. 超高压激波类设备热化学非平衡准一维计算软件. V1.0: 2022SR0066696 [P]. 2022-01-11.
    [29] PENG D Y, ROBINSON D B. A new two-constant equation of state [J]. Industrial and Engineering Chemistry Fundamentals, 1976, 15(1): 59–64. DOI: 10.1021/i160057a011.
    [30] LOPEZ-ECHEVERRY J S, REIF-ACHERMAN S, ARAUJO-LOPEZ E. Peng-Robinson equation of state: 40 years through cubics [J]. Fluid Phase Equilibria, 2017, 447: 39–71. DOI: 10.1016/j.fluid.2017.05.007.
    [31] SOAVE G. Equilibrium constants from a modified Redlich-Kwong equation of state [J]. Chemical Engineering Science, 1972, 27(6): 1197–1203. DOI: 10.1016/0009-2509(72)80096-4.
    [32] ZUDKEVITCH D, JOFFE J. Correlation and prediction of vapor-liquid equilibria with the Redlich-Kwong equation of state [J]. AIChE Journal, 1970, 16(1): 112–119. DOI: 10.1002/aic.690160122.
    [33] POLING B E, PRAUSNITZ J M, O’CONNELL J P. Properties of gases and liquids [M]. 5th ed. New York: McGraw-Hill Education, 2001: 151-155.
    [34] KAY W B. Gases and vapors at high temperature and pressure: density of hydrocarbon [J]. Industrial and Engineering Chemistry, 1936, 28(9): 1014–1019. DOI: 10.1021/ie50321a008.
    [35] LINSTROM P J, MALLARD W G. The NIST Chemistry WebBook: a chemical data resource on the internet [J]. Journal of Chemical and Engineering Data, 2001, 46(5): 1059–1063. DOI: 10.1021/je000236i.
  • 加载中
图(20) / 表(4)
计量
  • 文章访问数:  234
  • HTML全文浏览量:  68
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-18
  • 修回日期:  2023-12-28
  • 网络出版日期:  2023-12-28
  • 刊出日期:  2024-02-06

目录

    /

    返回文章
    返回