Study on resistance of UHMWPE thin panels to oblique penetration of small arms ammo
-
摘要: 为解决高性能轻质防弹插板受轻武器杀伤元侵彻防护问题,对超高分子量聚乙烯(ultra-high molecular weight polyethylene,UHMWPE)层压薄板进行了侵彻实验,分析了侵彻后UHMWPE薄板的变形失效特征并对比了轻武器杀伤元的破坏形貌。利用有限元软件LS-DYNA建立了UHMWPE薄板抗轻武器杀伤元侵彻数值模型,通过靶板破坏形态、凹陷深度以及弹头变形的实验结果对数值模型的有效性进行了验证。在此基础上,通过数值模拟方法研究了UHMWPE薄板受弹体斜侵彻失效模式,揭示了3种轻武器杀伤元侵彻下入射角度对跳弹现象和UHMWPE薄板破坏形态的影响规律。结果表明:7.62 mm×25 mm的钢芯弹与7.62 mm×39 mm的普通弹(钢芯)斜侵彻UHMWPE薄板的跳弹角均位于45°~50°范围内;7.62 mm×25 mm的铅芯弹在入射角大于70°时才可完整跳出,其余均以破损弹片形式飞溅,弹体破坏会对跳弹状况产生影响;入射角较小时,斜侵彻子弹会产生面积较大且具有一定深度的弹坑,连续击发的下一枚子弹会更容易击穿弹坑薄弱处的纤维板,斜侵彻作用对薄板受二次侵彻产生不利影响;入射角较大时,子弹会较完整地发生跳弹并具有高剩余速度,会对人员产生二次杀伤。研究成果可为UHMWPE薄板用于轻量化军用防弹插板设计提供参考。Abstract: In order to solve the problem of high-performance lightweight bulletproof inserts being protected by the penetration of light weapon killing element, this paper carried out penetration experiments on ultra-high molecular weight polyethylene (UHMWPE) laminated sheet, analysed the deformation and failure characteristics of the UHMWPE sheet after penetration and compared the damage morphology of light weapon killing element. A numerical model of UHMWPE laminate against the penetration of light weapon killers was established by using the finite element software LS-DYNA, and the validity of the numerical model was verified by the experimental results of the damage morphology of the target plate, the depth of the depression and the deformation of the warhead. On this basis, the failure mode of UHMWPE thin plate subjected to oblique penetration by the projectile is investigated by numerical methods, and the influence of the incidence angle on the ricochet phenomenon and the damage morphology of UHMWPE thin plate under the penetration of three kinds of light weapon killing elements is revealed. The results show that the ricochet angles of 7.62 mm×25 mm steel-core bullets and 7.62 mm×39 mm ordinary bullets (steel-core) obliquely penetrating UHMWPE plates are located in the range of 45°–50°; 7.62 mm×25 mm lead-core bullets can be completely ricocheted out when the angle of incidence is greater than 70°, and the rest of the bullets are in the form of broken shrapnel splinters, and the destruction of the bullet body has an effect on the ricochet condition; the oblique penetration bullets produce a large area and a large number of damage patterns at a smaller angle of incidence; the oblique penetration bullets produce a larger area and a larger number of damage patterns in the UHMWPE plates. When the angle of incidence is small, the oblique penetration bullet will produce a larger area and a certain depth of the crater, the next bullet will be easier to penetrate the crater weakness of the fibre plate, the oblique penetration effect on the thin plate by the secondary penetration of the negative impact, the angle of incidence is larger, the bullet will be more complete ricochet and has a high residual velocity, which will produce a secondary killing of personnel. The research results can be used for UHMWPE thin plate for lightweight military bulletproof insert design to provide reference.
-
Key words:
- UHMWPE thin panels /
- small arms personnel /
- oblique penetration /
- failure mode /
- ricochet angle
-
表 1 侵彻实验工况
Table 1. Invasion of experimental conditions
工况 靶板尺寸/mm 靶板面密度/(kg·m−2) 子弹规格 子弹初速/(m·s−1) 1 299×249×6.21 6.12 51式7.62 mm×25 mm手枪铅芯弹 445±10 2 303×250×10.31 10.26 51-B式7.62 mm×25 mm冲锋枪钢芯弹 515±10 3 303×250×19.45 19.18 56式7.62 mm×39 mm步枪普通弹 725±10 表 2 靶板凹陷深度
Table 2. Depression depth of target plate
射序 靶板凹陷深度/mm 工况1 工况2 工况3 1 16 14 16 2 20 9 9 3 16 10 20 4 17 11 4 5 18 12 18 6 20 14 18 Ea/GPa Eb/GPa Ec/GPa νba νca νcb Gab/MPa Gbc/MPa Gca/MPa 30.7 30.7 1.97 0.008 0.044 0.044 670 1 970 670 η XT/GPa YT/GPa YC/GPa SN/MPa SYZ/MPa SZX/MPa α 0 3 3 2.5 950 950 950 0.5 表 4 内聚力单元参数
Table 4. Parameters of cohesion unit
密度/(g·cm−3) 法向刚度/(N·mm−3) 面内刚度/(N·mm−3) $G_{ {\text{Ⅰ}} {\text{C}}} $/(J·mm−2) $G_{ {\text{Ⅱ}} {\text{C}}} $/(J·mm−2) T S 2.0 1.0×106 1.0×106 0.28 0.495 62 110 表 5 侵彻弹丸各部分材料的Johnson-Cook本构参数
Table 5. Johnson-Cook intrinsic parameters of the material of the penetrating projectile parts
弹头构成 密度/(g·cm−3) 弹性模量/GPa 泊松比 A/MPa B/MPa n c 镀铜钢护套 7.85 210 0.31 448.20 303.4 0.15 0.003 33 钢弹芯 7.85 210 0.31 234.34 413.8 0.25 0.110 00 铅弹芯/铅壳 10.10 13.8 0.42 10.30 41.3 0.21 0.003 33 弹头构成 m d1 d2 d3 d4 d5 镀铜钢护套 1.03 2.250 0.000 5 −3.6 −0.012 3 0 钢弹芯 1.03 5.625 0.3 −7.2 −0.012 3 0 铅弹芯/铅壳 1.03 2.500 0 0 0 0 表 6 网格尺寸敏感性验算
Table 6. Mesh size sensitivity calculation
网格尺寸/mm 实验结果/mm 模拟结果/mm 1.0 18.00 10.32 0.5 18.00 16.31 0.4 18.00 17.03 0.3 18.00 17.17 0.2 18.00 17.21 表 7 UHMWPE靶弹着点凹深数值模拟结果与实验结果的对比
Table 7. Comparison between simulation and experimental results of concave depth at impact point of UHMWPE target
靶板类型 实验平均凹陷深度/mm 模拟平均凹陷深度/mm 误差/% GA141 2级靶板 17.83 16.61 6.8 GA141 4级靶板 11.67 11.33 2.9 GA141 5级靶板 18.00 17.17 4.6 -
[1] 赵美琪, 张乐天, 叶纯麟, 等. 超高分子量聚乙烯高抗冲性能优化研究及进展 [J]. 化工新型材料, 2021, 49(10): 53–57, 62. DOI: 10.19817/j.cnki.issn1006-3536.2021.10.011.ZHAO M Q, ZHANG L T, YE C L, et al. Progress on optimization of high impact resistance of UHMWPE [J]. New Chemical Materials, 2021, 49(10): 53–57, 62. DOI: 10.19817/j.cnki.issn1006-3536.2021.10.011. [2] 叶卓然, 罗靓, 潘海燕, 等. 超高分子量聚乙烯纤维及其复合材料的研究现状与分析 [J]. 复合材料学报, 2022, 39(9): 4286–4309. DOI: 10.13801/j.cnki.fhclxb.20220803.002.YE Z R, LUO L, PAN H Y, et al. Research status and analysis of ultra-high molecular weight polyethylene fiber and its composites [J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4286–4309. DOI: 10.13801/j.cnki.fhclxb.20220803.002. [3] PEINADO J, LIU L J, OLMEDO Á, et al. Influence of stacking sequence on the impact behaviour of UHMWPE soft armor panels [J]. Composite Structures, 2022, 286: 115365. DOI: 10.1016/j.compstruct.2022.115365. [4] 付杰, 李伟萍, 黄献聪, 等. 新型超高分子量聚乙烯膜材料防弹性能及机理 [J]. 兵工学报, 2021, 42(11): 2453–2464. DOI: 10.3969/j.issn.1000-1093.2021.11.019.FU J, LI W P, HUANG X C, et al. Bullet-proof performance and mechanism of new ultra-high molecular weight polyethylene film [J]. Acta Armamentarii, 2021, 42(11): 2453–2464. DOI: 10.3969/j.issn.1000-1093.2021.11.019. [5] 董彬, 魏汝斌, 王小伟, 等. 高性能有机纤维在防弹复合材料领域应用研究现状 [J]. 复合材料科学与工程, 2023(1): 116–123. DOI: 10.19936/j.cnki.2096-8000.20230128.015.DONG B, WEI R B, WANG X W, et al. Review of high performance organic fibers in ballistic composite fields [J]. Composites Science and Engineering, 2023(1): 116–123. DOI: 10.19936/j.cnki.2096-8000.20230128.015. [6] GOLDSMITH W. Non-ideal projectile impact on targets [J]. International Journal of Impact Engineering, 1999, 22(2/3): 95–395. DOI: 10.1016/S0734-743X(98)00031-1. [7] WEI H Y, ZHANG X F, LIU C, et al. Oblique penetration of ogive-nosed projectile into aluminum alloy targets [J]. International Journal of Impact Engineering, 2021, 148: 103745. DOI: 10.1016/j.ijimpeng.2020.103745. [8] CAO M J, CHEN L, FANG Q. Penetration and perforation characteristics of the novel UHMWPE film laminates by the 7.62 mm standard bullet [J]. Composite Structures, 2023, 308: 116669. DOI: 10.1016/j.compstruct.2023.116669. [9] 王晓强, 朱锡, 梅志远, 等. 超高分子量聚乙烯纤维增强层合厚板抗弹性能实验研究 [J]. 爆炸与冲击, 2009, 29(1): 29–34. DOI: 10.11883/1001-1455(2009)01-0029-06.WANG X Q, ZHU X, MEI Z Y, et al. Ballistic performances of ultra-high molecular weight polyethylene fiber-reinforced thick laminated plates [J]. Explosion and Shock Waves, 2009, 29(1): 29–34. DOI: 10.11883/1001-1455(2009)01-0029-06. [10] 王智, 常利军, 黄星源, 等. 爆炸冲击波与破片联合作用下防弹衣复合结构防护效果的数值模拟 [J]. 爆炸与冲击, 2023, 43(6): 063202. DOI: 10.11883/bzycj-2022-0515.WANG Z, CHANG L J, HUANG X Y, et al. Simulation on the defending effect of composite structure of body armor under the combined action of blast wave and fragments [J]. Explosion and Shock Waves, 2023, 43(6): 063202. DOI: 10.11883/bzycj-2022-0515. [11] ZHU Y H, LIU K, WEN Y K, et al. Experimental and numerical study on the ballistic performance of ultrahigh molecular weight polyethylene laminate [J]. Polymer Composites, 2021, 42(10): 5168–5198. DOI: 10.1002/PC.26214. [12] ZHANG R, HAN B, ZHOU Y, et al. Mechanism-driven analytical modelling of UHMWPE laminates under ballistic impact [J]. International Journal of Mechanical Sciences, 2023, 245: 108132. DOI: 10.1016/j.ijmecsci.2023.108132. [13] 贾楠, 焦亚男, 周庆, 等. 碳化硅-超高分子量聚乙烯纤维增强树脂基复合材料复合装甲板的抗穿甲弹侵彻性能及其损伤机制 [J]. 复合材料学报, 2022, 39(10): 4908–4917. DOI: 10.13801/j.cnki.fhclxb.20210928.002.JIA N, JIAO Y N, ZHOU Q, et al. Anti-penetration performance of SiC-ultra-high molecular weight polyethylene fiber reinforced resin matrix composite armor plate against armor piercing projectile and its damage mechanism [J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4908–4917. DOI: 10.13801/j.cnki.fhclxb.20210928.002. [14] 张元豪, 程忠庆, 侯海量, 等. 结构间隙对夹芯式复合装甲结构抗侵彻性能的影响 [J]. 爆炸与冲击, 2019, 39(12): 125104. DOI: 10.11883/bzycj-2019-0270.ZHANG Y H, CHENG Z Q, HOU H L, et al. Influence of structural interspace on anti-penetration performance of sandwich composite armor system [J]. Explosion and Shock Waves, 2019, 39(12): 125104. DOI: 10.11883/bzycj-2019-0270. [15] MO G L, MA Q W, JIN Y X, et al. Delamination process in cross-ply UHMWPE laminates under ballistic penetration [J]. Defence Technology, 2021, 17(1): 278–286. DOI: 10.1016/j.dt.2020.05.001. [16] 刘迪, 肖依, 江旭伟, 等. SiC/UHMWPE复合装甲板抗侵彻性能的试验与数值模拟 [J]. 上海大学学报(自然科学版), 2020, 26(2): 234–243. DOI: 10.12066/j.issn.1007-2861.2037.LIU D, XIAO Y, JIANG X W, et al. Anti-penetration capability of SiC/UHMWPE composite armour plates through experimental and numerical simulation [J]. Journal of Shanghai University (Natural Science Edition), 2020, 26(2): 234–243. DOI: 10.12066/j.issn.1007-2861.2037. [17] HU P C, YANG H F, ZHANG P, et al. Experimental and numerical investigations into the ballistic performance of ultra-high molecular weight polyethylene fiber-reinforced laminates [J]. Composite Structures, 2022, 290: 115499. DOI: 10.1016/j.compstruct.2022.115499. [18] CAO M J, CHEN L, XU R Z, et al. Effect of the temperature on ballistic performance of UHMWPE laminate with limited thickness [J]. Composite Structures, 2021, 277: 114638. DOI: 10.1016/j.compstruct.2021.114638. [19] QU K F, WU C Q, LIU J, et al. Ballistic performance of multi-layered aluminium and UHMWPE fibre laminate targets subjected to hypervelocity impact by tungsten alloy ball [J]. Composite Structures, 2020, 253: 112785. DOI: 10.1016/j.compstruct.2020.112785. [20] 季海波, 王昕, 赵振宇, 等. 带攻角平头弹侵彻不同厚度芳纶层合板的数值模拟 [J]. 爆炸与冲击, 2023, 43(6): 063302. DOI: 10.11883/bzycj-2022-0231.JI H B, WANG X, ZHAO Z Y, et al. Simulation on penetration of a flat-nosed projectile with attack angle into aramid laminates having varying thickness [J]. Explosion and Shock Waves, 2023, 43(6): 063302. DOI: 10.11883/bzycj-2022-0231. [21] MEYER C S, CATUGAS I G, GILLESPIE J W JR, et al. Investigation of normal, lateral, and oblique impact of microscale projectiles into unidirectional glass/epoxy composites [J]. Defence Technology, 2022, 18(11): 1960–1978. DOI: 10.1016/j.dt.2021.08.012. [22] ZHU Y H, ZHANG X Y, XUE B Y, et al. High-strain-rate compressive behavior of UHMWPE fiber laminate [J]. Applied Sciences, 2020, 10(4): 1505. DOI: 10.3390/app10041505. [23] CARRASCO-BALTASAR D, GARCÍA-CASTILLO S, IVAÑEZ I, et al. Modelling of woven CFRP plates subjected to oblique high-velocity impact and membrane loads [J]. Composite Structures, 2023, 303: 116344. DOI: 10.1016/j.compstruct.2022.116344. [24] LÓPEZ-PUENTE J, ZAERA R, NAVARRO C. Experimental and numerical analysis of normal and oblique ballistic impacts on thin carbon/epoxy woven laminates [J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(2): 374–387. DOI: 10.1016/j.compositesa.2007.10.004. [25] HAZELL P J, KISTER G, STENNETT C, et al. Normal and oblique penetration of woven CFRP laminates by a high velocity steel sphere [J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(5): 866–874. DOI: 10.1016/j.compositesa.2008.01.007. [26] FAWAZ Z, ZHENG W, BEHDINAN K. Numerical simulation of normal and oblique ballistic impact on ceramic composite armours [J]. Composite Structures, 2004, 63(3/4): 387–395. DOI: 10.1016/S0263-8223(3)00187-9. [27] O’MASTA M R, CRAYTON D H, DESHPANDE V S, et al. Mechanisms of penetration in polyethylene reinforced cross-ply laminates [J]. International Journal of Impact Engineering, 2015, 86: 249–264. DOI: 10.1016/j.ijimpeng.2015.08.012. [28] 胡年明, 朱锡, 侯海量, 等. 高速破片侵彻下高分子聚乙烯层合板的弹道极限估算方法 [J]. 中国舰船研究, 2014, 9(4): 55–62. DOI: 10.3969/j.issn.1673-3185.2014.04.009.HU N M, ZHU X, HOU H L, et al. Estimating method for the ballistic limit of ultra-high molecular weight polyethylene fiber-reinforced laminates under high-velocity fragment penetration [J]. Chinese Journal of Ship Research, 2014, 9(4): 55–62. DOI: 10.3969/j.issn.1673-3185.2014.04.009. [29] XIE Y, WANG T, WANG L M, et al. Numerical investigation of ballistic performance of SiC/TC4/UHMWPE composite armor against 7.62 mm AP projectile [J]. Ceramics International, 2022, 48(16): 24079–24090. DOI: 10.1016/j.ceramint.2022.05.088. [30] LÄSSIG T, NGUYEN L, MAY M, et al. A non-linear orthotropic hydrocode model for ultra-high molecular weight polyethylene in impact simulations [J]. International Journal of Impact Engineering, 2015, 75: 110–122. DOI: 10.1016/j.ijimpeng.2014.07.004. [31] MALIK M A A. Experimental and numerical study on the mechanical properties of adhesive joints under impact loads using Ls-Dyna [D]. Di Torino: Politecnico di Torino, 2021: 17–30. [32] CAO D F, DUAN Q F, HU H X, et al. Computational investigation of both intra-laminar matrix cracking and inter-laminar delamination of curved composite components with cohesive elements [J]. Composite Structures, 2018, 192: 300–309. DOI: 10.1016/j.compstruct.2018.02.072. [33] JOHNSON W, SENGUPTA A K, GHOSH S K. High velocity oblique impact and ricochet mainly of long rod projectiles: an overview [J]. International Journal of Mechanical Sciences, 1982, 24(7): 425–436. DOI: 10.1016/0020-7403(82)90052-2. [34] BØRVIK T, OLOVSSON L, DEY S, et al. Normal and oblique impact of small arms bullets on AA6082-T4 aluminium protective plates [J]. International Journal of Impact Engineering, 2011, 38(7): 577–589. DOI: 10.1016/j.ijimpeng.2011.02.001. [35] IQBAL M A, GUPTA G, GUPTA N K. 3D numerical simulations of ductile targets subjected to oblique impact by sharp nosed projectiles [J]. International Journal of Solids and Structures, 2010, 47(2): 224–237. DOI: 10.1016/j.ijsolstr.2009.09.032.