镁铝水滑石抑制聚乙烯粉尘爆炸特性与机理

纪文涛 郭潇潇 陈志滔 蔡冲冲 王燕

纪文涛, 郭潇潇, 陈志滔, 蔡冲冲, 王燕. 镁铝水滑石抑制聚乙烯粉尘爆炸特性与机理[J]. 爆炸与冲击, 2024, 44(4): 045401. doi: 10.11883/bzycj-2023-0263
引用本文: 纪文涛, 郭潇潇, 陈志滔, 蔡冲冲, 王燕. 镁铝水滑石抑制聚乙烯粉尘爆炸特性与机理[J]. 爆炸与冲击, 2024, 44(4): 045401. doi: 10.11883/bzycj-2023-0263
JI Wentao, GUO Xiaoxiao, CHEN Zhitao, CAI Chongchong, WANG Yan. Suppression characteristics and mechanism of polyethylene dust explosion by Mg-Al hydrotalcite[J]. Explosion And Shock Waves, 2024, 44(4): 045401. doi: 10.11883/bzycj-2023-0263
Citation: JI Wentao, GUO Xiaoxiao, CHEN Zhitao, CAI Chongchong, WANG Yan. Suppression characteristics and mechanism of polyethylene dust explosion by Mg-Al hydrotalcite[J]. Explosion And Shock Waves, 2024, 44(4): 045401. doi: 10.11883/bzycj-2023-0263

镁铝水滑石抑制聚乙烯粉尘爆炸特性与机理

doi: 10.11883/bzycj-2023-0263
基金项目: 国家自然科学基金(52374197);国家重点研发计划“重大自然灾害防控与公共安全”重点专项(2022YFC3080700);河南省优秀青年科学基金项目(212300410042)
详细信息
    作者简介:

    纪文涛(1989- ),男,博士,副教授,jiwentao@hpu.edu.cn

    通讯作者:

    王 燕(1982- ),女,博士,教授,yanwang@hpu.edu.cn

  • 中图分类号: O389; X937

Suppression characteristics and mechanism of polyethylene dust explosion by Mg-Al hydrotalcite

  • 摘要: 为寻求新型、清洁、高效的聚乙烯粉尘爆炸抑制剂,将镁铝水滑石用于聚乙烯粉尘爆炸抑制,并从爆炸超压和最低着火温度两方面,分析了镁铝水滑石抑制聚乙烯粉尘爆炸特性,并与氢氧化铝、氢氧化镁进行对比。结果表明,镁铝水滑石对聚乙烯粉尘爆炸超压和最低着火温度的抑制作用均优于氢氧化铝和氢氧化镁。在爆炸超压的抑制方面,在抑制比为2时,镁铝水滑石可完全抑制聚乙烯粉尘爆炸,而氢氧化铝和氢氧化镁对聚乙烯达到完全抑爆所需的抑制比分别为4和5。最低着火温度的抑制方面,抑制比为1时,镁铝水滑石可使聚乙烯粉尘的最低着火温度提高290 ℃,大于氢氧化铝的260 ℃和氢氧化镁的250 ℃。此外,结合镁铝水滑石的热解特性及红外光谱,从物理作用和化学作用两个方面对聚乙烯粉尘爆炸的抑制机理进行分析,揭示了阻断爆炸反应的进程。
  • 图  1  镁铝水滑石结构图

    Figure  1.  Structure diagram of Mg-Al hydrotalcite

    图  2  20 L球形爆炸装置示意图

    Figure  2.  Diagram of 20 L spherical explosion test system

    图  3  粉尘云最低着火温度测试装置

    Figure  3.  Minimum ignition temperature test system of dust cloud

    图  4  4种粉体的粒径分布及扫描电镜图

    Figure  4.  Particle size distribution and scanning electron microscopy of four powders

    图  5  聚乙烯爆炸超压随粉尘质量浓度的变化规律

    Figure  5.  Variation of polyethylene explosion overpressure with dust mass concentration

    图  6  3种抑爆粉体作用下聚乙烯粉尘最大爆炸压力随抑制比的变化规律

    Figure  6.  Variation of the maximum explosion pressure of polyethylene dust with inhibition ratio under the action of three kinds of explosion suppression powders

    图  7  3种抑爆粉体作用下聚乙烯粉尘最大爆炸压力上升速率随抑制比的变化规律

    Figure  7.  Variation of the maximum explosion pressure rise rate of polyethylene dust with inhibition ratio under the action of three explosion suppression powders

    图  8  聚乙烯粉尘最低着火温度随粉尘质量浓度变化规律图

    Figure  8.  Variation of minimum ignition temperature of polyethylene dust with dust mass concentration

    图  9  3种抑爆粉体作用下聚乙烯粉尘最低着火温度随抑制比变化规律

    Figure  9.  Variation of minimum ignition temperature of polyethylene dust with inhibition ratio under the action of three explosion suppression powders

    图  10  氢氧化铝、氢氧化镁和镁铝水滑石粉体的热重曲线和DSC曲线

    Figure  10.  Thermogravimetric and DSC curves of Al(OH)3, Mg(OH)2 and (Mg0.667Al0.333)(OH)2(CO3)0.167(H2O)0.5 powders

    图  11  混合粉体热重曲线

    Figure  11.  Thermogravimetric curves of mixed powders

    图  12  镁铝水滑石吸光度随波数变化规律图

    Figure  12.  Figure showing the variation of absorbance of Mg-Al hydrotalcite with wavenumber

    图  13  镁铝水滑石对聚乙烯粉尘爆炸的抑制机理

    Figure  13.  Mechanism of Mg-Al hydrotalcite suppressing polyethylene dust explosion

  • [1] MAZUR K, JAKUBOWSKA P, ROMAÑSKA P, et al. Green high density polyethylene (HDPE) reinforced with basalt fiber and agricultural fillers for technical applications [J]. Composites Part B: Engineering, 2020, 202: 108399. DOI: 10.10.1016/j.compositesb.2020.108399.
    [2] OKHOTNIKOVA E S, GANEEVA Y M, FROLOV I N, et al. Structural characterization and application of bitumen modified by recycled polyethylenes [J]. Construction and Building Materials, 2022, 316: 126118. DOI: 10.1016/j.conbuildmat.2021.126118.
    [3] SAHI S, DJIDJELLI H, BOUKERROU A. Study of the properties and biodegradability of the native and plasticized corn flour-filled low density polyethylene composites for food packaging applications [J]. Materials Today: Proceedings, 2021, 36: 67–73. DOI: 10.1016/j.matpr.2020.05.317.
    [4] 马龙. 全球聚乙烯供需分析与预测 [J]. 世界石油工业, 2021, 28(4): 58–65.

    MA L. Anaysis and forecast of global polyethylene supply and demand [J]. World Petroleum Industry, 2021, 28(4): 58–65.
    [5] 马冉, 高建村, 杨凯, 等. 聚乙烯粉尘爆炸研究进展 [J]. 中国粉体技术, 2017, 23(6): 59–63. DOI: CNKI:SUN:FTJS.0.2017-06-012.

    MA R, GAO J C, YANG K, et al. Progress research on polyethylene dust explosion [J]. China Power Science and Technology, 2017, 23(6): 59–63. DOI: CNKI:SUN:FTJS.0.2017-06-012.
    [6] YANG K, CAO J, ZHAO Y, et al. Inerting effect of N2 on explosion of LDPE dust/ethylene hybrid mixtures [J]. Journal of Loss Prevention in the Process Industries, 2021, 70: 104431. DOI: 10.1016/j.jlp.2021.104431.
    [7] GAN B, GAO W, JIANG H, et al. Flame propagation behaviors and temperature characteristics in polyethylene dust explosions [J]. Powder Technology, 2018, 328: 345–357. DOI: 10.1016/j.powtec.2018.01.061.
    [8] PANG L, MA R, HU S, et al. Flame propagation of local LDPE dust cloud in a semi-open duct [J]. Experimental Thermal and Fluid Science, 2019, 101: 209–216. DOI: 10.1016/j.expthermflusci.2018.10.025.
    [9] 庞磊, 马冉, 高建村, 等. 粉尘云浓度对 HDPE粉尘云最低着火温度的影响 [J]. 中国安全生产科学技术, 2017, 13(5): 5–9. DOI: 10.11731/j.issn.1673-193x.2017.05.001.

    PANG L, MA R, GAO J C, et al. Effect of dust cloud concentration on minimum ignition temperature of HDPE dust cloud [J]. China Safety Science and Technology, 2017, 13(5): 5–9. DOI: 10.11731/j.issn.1673-193x.2017.05.001.
    [10] 庞磊, 赵钰, 杨凯, 等. 低密度聚乙烯粉尘云爆炸敏感性实验 [J]. 消防科学与技术, 2019, 38(9): 1211–1215. DOI: CNKI:SUN:XFKJ.0.2019-09-004.

    PANG L, ZHAO Y, YANG K, et al. Explosion susceptibility experiment of low-density polyethylene dust cloud [J]. Fire Science and Technology, 2019, 38(9): 1211–1215. DOI: CNKI:SUN:XFKJ.0.2019-09-004.
    [11] LIU J, MENG X, YAN K, et al. Study on the effect and mechanism of Ca(H2PO4)2 and CaCO3 powders on inhibiting the explosion of titanium powder [J]. Powder Technology, 2022, 395: 158–167. DOI: 10.1016/j.powtec.2021.09.067.
    [12] LU K, CHEN X, LUO Z, et al. The inhibiting effects of sodium carbonate on coal dust deflagration based on thermal methods [J]. Fuel, 2022, 315: 123122. DOI: 10.1016/j.fuel.2021.123122.
    [13] ZHAO Q, CHEN X, DAI H, et al. Inhibition of diammonium phosphate on the wheat dust explosion [J]. Powder technology, 2020, 367: 751–761. DOI: 10.1016/j.powtec.2020.04.026.
    [14] ZHANG Y, PAN Z, YANG J, et al. Study on the suppression mechanism of (NH4)2CO3 and SiC for polyethylene deflagration based on flame propagation and experimental analysis [J]. Powder Technology, 2022, 399: 117193. DOI: 10.1016/J.POWTEC.2022.117193.
    [15] WANG Y, QI Y, PEI B, et al. Suppression of polyethylene dust explosion by sodium bicarbonate [J]. Powder Technology, 2020, 367: 206–212. DOI: 10.1016/j.powtec.2020.03.049.
    [16] LIN S, LIU Z, QIAN J, et al. Inertant effects and mechanism of Al(OH)3 powder on polyethylene dust explosions based on flame propagation behavior and thermal analysis [J]. Fire Safety Journal, 2021, 124: 103392. DOI: 10.1016/j.firesaf.2021.103392.
    [17] ADDAI E K, GABEL D, KRAUSE U. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures [J]. Journal of Hazardous Materials, 2016, 307: 302–311. DOI: 10.1016/j.jhazmat.2016.01.018.
    [18] JIANG H, BI M, LI B, et al. Inhibition evaluation of ABC powder in aluminum dust explosion [J]. Journal of Hazardous Materials, 2019, 361: 273–282. DOI: 10.1016/j.jhazmat.2018.07.045.
    [19] SINGHAL A, SKANDAN G, WANG A, et al. On nanoparticle aggregation during vapor phase synthesis [J]. Nanostructured Materials, 1999, 11(4): 545–552. DOI: 10.1016/S0965-9773(99)00343-8.
    [20] 余明高, 贺涛, 李海涛, 等. 改性高岭土抑爆剂对瓦斯煤尘复合爆炸压力的影响 [J]. 煤炭学报, 2022, 47(1): 348–359. DOI: 10.13225/j.cnki.jccs.yg21.1731.

    YU M G, HE T, LI H T, et al. Influence of modified kaoline inhibitor on the explosion suppression pressure of the methane-coal dust mixture [J]. Journal of China Coal Society, 2022, 47(1): 348–359. DOI: 10.13225/j.cnki.jccs.yg21.1731.
    [21] XU S, ZHANG M, LI S Y, et al. The effect of ammonium polyphosphate on the mechanism of phosphorous-containing hydrotalcite synergism of flame retardation of polypropylene [J]. Applied Clay Science, 2020, 185: 105348. DOI: 10.1016/j.clay.2019.105348.
    [22] SANTOSA S J, ASTUTI D P. Reusable high performance of calcined Mg/Al hydrotalcite for the removal of Navy Blue and Yellow F3G dyes [J]. Chinese Journal of Chemical Engineering, 2021, 38: 247–254. DOI: 10.1016/j.cjche.2020.08.038.
    [23] CHEN J, WANG C, ZHANG Y, et al. Engineering ultrafine NiS cocatalysts as active sites to boost photocatalytic hydrogen production of Mg-Al layered double hydroxide [J]. Applied Surface Science, 2020, 506: 144999. DOI: 10.1016/j.apsusc.2019.144999.
    [24] NAKAYAMA H, HATAKEYAMA A, TSUHAKO M. Encapsulation of nucleotides and DNA into Mg-Al layered double hydroxide [J]. International journal of pharmaceutics, 2010, 393(1/2): 105–112. DOI: 10.1016/j.ijpharm.2010.04.013.
    [25] PÉREZ A, OTERO R, ESQUINAS A R, et al. Potential use of modified hydrotalcites as adsorbent of bentazon and metazachlor [J]. Applied clay science, 2017, 141: 300–307. DOI: 10.1016/j.clay.2017.03.007.
    [26] GUALANDI I, TESSAROLO M, MARIANI F, et al. Layered double hydroxide-modified organic electrochemical transistor for glucose and lactate biosensing [J]. Sensors, 2020, 20(12): 3453. DOI: 10.3390/s20123453.
    [27] ZHOU X, MU X, CAI W, et al. Design of hierarchical NiCo-LDH@PZS hollow dodecahedron architecture and application in high-performance epoxy resin with excellent fire safety [J]. ACS Applied Materials & Interfaces, 2019, 11(44): 41736–41749. DOI: 10.1021/acsami.9b16482.
    [28] QIAN Y, QIAO P, LI L, et al. Hydrothermal synthesis of lanthanum-doped MgAl-layered double hydroxide/graphene oxide hybrid and its application as flame retardant for thermoplastic polyurethane [J]. Advances in Polymer Technology, 2020, 2020(3): 1–10. DOI: 10.1155/2020/1018093.
    [29] HUANG C, CHEN X, YUAN B, et al. Suppression of wood dust explosion by ultrafine magnesium hydroxide [J]. Journal of hazardous materials, 2019, 378: 120723. DOI: 10.1016/j.jhazmat.2019.05.116.
    [30] ZHANG L, BIAN Y, KUAI D. Preparation and flame retardant property of nano-aluminum hydroxide foam for preventing spontaneous coal combustion [J]. Fuel, 2021, 304: 121494. DOI: 10.1016/J.FUEL.2021.121494.
    [31] WANG Z, MENG X, YAN K, et al. Inhibition effects of Al(OH)3 and Mg(OH)2 on Al-Mg alloy dust explosion [J]. Journal of Loss Prevention in the Process Industries, 2020, 66: 104206. DOI: 10.1016/j.jlp.2020.104206.
    [32] WANG Z, MENG X, YAN K, et al. Study on the inhibition of Al-Mg alloy dust explosion by modified Mg(OH)2 [J]. Powder Technology, 2021, 384: 284–296. DOI: 10.1016/j.powtec.2021.02.037.
    [33] WANG X, DAI H, LIANG G, et al. Flame propagation characteristics of mixed pulverized coal at the atmosphere of gasification [J]. Fuel, 2021, 300: 120954. DOI: 10.1016/J.FUEL.2021.120954.
    [34] WANG Q, SUN Y, JIANG J, et al. Inhibiting effects of gas-particle mixtures containing CO2, Mg(OH)2 particles, and NH4H2PO4 particles on methane explosion in a 20-L closed vessel [J]. Journal of Loss Prevention in the Process Industries, 2020, 64: 104082. DOI: 10.1016/j.jlp.2020.104082.
    [35] YAHYAOUI R, JIMENEZ P E S, MAQUEDA L A P, et al. Synthesis, characterization and combined kinetic analysis of thermal decomposition of hydrotalcite (Mg6Al2(OH)16CO3·4H2O) [J]. Thermochimica Acta, 2018, 667: 177–184. DOI: 10.1016/j.tca.2018.07.025.
    [36] 国家技术监督局. 粉尘云最大爆炸压力和最大爆炸压力上升速率测定方法: GB/T 16426—1996 [S]. 北京: 中国标准出版社, 1996.
    [37] 国家技术监督局. 粉尘云最低着火温度测定方法: GB/T 16429—1996 [S]. 北京: 中国标准出版社, 1997.
    [38] Determination of explosion characteristics of dust clouds: Part 3: Determination of the lower explosion limit LEL of dust clouds: EN14034-3[S]. England: The Standards Policy and Strategy Committee, 2006: 5-16.
    [39] 邹瑜. 水滑石类功能材料的特性分析及其阻燃应用 [J]. 硅酸盐通报, 2020, 39(12): 4034–4042. DOI: 10.16552/j.cnki.issn1001-1625.2020.12.041.

    ZOU Y. Characteristic analysis of layered double hydroxides functional materials and its flame retardant application [J]. Bulletion of the Chinese Ceramic society, 2020, 39(12): 4034–4042. DOI: 10.16552/j.cnki.issn1001-1625.2020.12.041.
    [40] 甘波. 乙烯/聚乙烯混合爆炸火焰传播机理研究[D]. 大连:大连理工大学, 2019. DOI: 10.26991/d.cnki.gdllu.2019.001235.
    [41] 李运芝, 袁俊明, 王保民. 粉尘爆炸研究进展[J]. 太原师范学院学报(自然科学版), 2004(2): 79–82. DOI: 10.3969/j.issn.1672-2027.2004.02.024.

    LI Y Z, YUAN J M, WANG B M. Developing of dust exploding study[J]. Journal of Taiyuan Normal University (Natural Science Edition), 2004(2): 79–82. DOI: 10.3969/j.issn.1672-2027.2004.02.024.
    [42] 袁长高. 轻烃对聚乙烯装置燃爆危险的影响研究[D]. 青岛:中国石油大学(华东), 2015.
    [43] JIN X, GU X, CHEN C, et al. The fire performance of polylactic acid containing a novel intumescent flame retardant and intercalated layered double hydroxides [J]. Journal of Materials Science, 2017, 52(20): 12235–12250. DOI: 10.1007/s10853-017-1354-5.
    [44] 鲍艳, 唐培, 刘超. 水滑石的制备及其阻燃性能研究进展 [J]. 精细化工, 2022, 39(1): 24–33. DOI: 10.13550/j.jxhg.20210696.

    BAO Y, TANG P, LIU C. Research progress on preparation and flame retardant properties of layered double hydroxides [J]. Fine Chemicals, 2022, 39(1): 24–33. DOI: 10.13550/j. jxhg. 20210696. DOI: 10.13550/j.jxhg.20210696.
    [45] DU J Z, JIN L, ZENG H Y, et al. Facile preparation of an efficient flame retardant and its application in ethylene vinyl acetate [J]. Applied Clay Science, 2019, 168: 96–105. DOI: 10.1016/j.clay.2018. 11. 004. DOI: 10.1016/j.clay.2018.11.004.
    [46] XU S, LI S Y, ZHANG M, et al. Fabrication of green alginate-based and layered double hydroxides flame retardant for enhancing the fire retardancy properties of polypropylene [J]. Carbohydrate Polymers, 2020, 234: 115891. DOI: 10.1016/j.carbpol.2020.115891.
    [47] ZHANG L, GUO D, TANTAI X, et al. Synthesis of three-dimensional hierarchical flower-like Mg-Al layered double hydroxides with excellent adsorption performance for organic anionic dyes [J]. Transactions of Tianjin University, 2021, 27(5): 394–408. DOI: 10.1007/s12209-020-00249-5.
    [48] SHAN R, YAN L, YANG Y, et al. Highly efficient removal of three red dyes by adsorption onto Mg-Al-layered double hydroxide [J]. Journal of Industrial and Engineering Chemistry, 2015, 21: 561–568. DOI: 10.1016/j.jiec.2014.03.019.
    [49] WEI P R, CHENG S H, LIAO W N, et al. Synthesis of chitosan-coated near-infrared layered double hydroxide nanoparticles for in vivo optical imaging [J]. Journal of Materials Chemistry, 2012, 22(12): 5503–5513. DOI: 10.1039/C2JM16447G.
  • 加载中
图(13)
计量
  • 文章访问数:  177
  • HTML全文浏览量:  30
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-02
  • 修回日期:  2023-10-30
  • 网络出版日期:  2024-01-17
  • 刊出日期:  2024-04-07

目录

    /

    返回文章
    返回