Test method of dynamic mechanical properties of filling body based on pendulum-loaded rock bar SHPB device
-
摘要: 针对充填体试样SHPB(split Hopkinson pressure bar)试验测试中存在的透射波测量的难点问题,采用岩石长杆代替钢杆作为入射杆和透射杆的方法改进摆锤冲击加载SHPB试验系统,探讨了SHPB试验中黏弹性波的传播及波阻抗匹配问题;基于应力波在岩石杆件系统中的传播规律研究,定义了应力波在入射杆和透射杆上传播的黏性衰减系数、试样-岩杆界面的透反射衰减系数;基于Kelvin-Voigt模型,利用一维波动分析程序,得到了岩石杆件-充填体的波阻抗匹配系数与透反射衰减系数的关系;依据现场充填体特性、波阻抗匹配系数和透反射衰减系数,选取了四种岩石长杆改进摆锤冲击加载SHPB试验装置;利用一维波动分析程序,计算了岩杆的黏性系数、充填体和岩杆界面的应力和应变,分析了透射波的波形特征和信噪比,发现四种岩石与充填体波阻抗的匹配程度从好到差依次为绿砂岩、花岗岩、大理岩、玄武岩;建立了以绿砂岩为入射杆和透射杆的摆锤冲击加载SHPB试验系统,开展了充填体的动态冲击试验,验证了试样中的应力平衡。
-
关键词:
- 波阻抗匹配 /
- SHPB /
- Kelvin-Voigt模型 /
- 岩石杆件
Abstract: In order to deal with the difficulty of measuring the transmitted wave in the backfilling SHPB (split Hopkinson pressure bar) test, rock bars are used to instead of steel bar as the incident bar and transmitted bar for improving the pendulum hammer driven SHPB system. The wave impedance matching formula and viscoelastic wave propagation in SHPB test is proposed. Based on the study of stress wave propagation in rock bar systems, the viscosity attenuation coefficients of stress wave propagation in the incident and transmitted rock bars and the reflection and transmission attenuation coefficient of the rock bar-backfilling body are defined. Based on the Kelvin-Voigt model, the effects of rock bar density and wave velocity on the transmitted wave measured of the filling body in the SHPB tests were simulated and analyzed by using a one-dimensional wave propagation analysis procedure. The relationship between the wave impedance matching coefficient and the reflection and transmission attenuation coefficient of the rock bar-backfilling body were obtained. According to the characteristics of field backfilling, the wave impedance matching coefficient and the reflection and transmission attenuation coefficient, four long rock bars were selected to modify the pendulum hammer driven SHPB system. The viscosity coefficient of the rock bar was measured and stresses and strains on the interfaces of rock bar and backfilling body were calculated by using the one-dimensional wave propagation analysis procedure. The stress waveform characteristics and signal-to-noise ratio of the transmitted waves were analyzed. The matching degree of four kinds of rock bars and backfilling wave impedance from good to poor is obtained, which is green sandstone, granite, marble and basalt. The dynamic impacting experiment on the filling body was conducted and the stress balance in the sample was verified. The pendulum hammer driven SHPB system with green sandstone incident bar and transmission bar is established, which provides support for the dynamic mechanical characteristics of the backfilling.-
Key words:
- wave impedance matching /
- SHPB /
- Kelvin-Voigt model /
- rock bars
-
表 1 充填体的配比
Table 1. Material proportion of backfilling
充填体
骨料胶凝
材料灰砂比 固体
含量/%新城金矿的全尾砂 山金SC2020-C 1∶15 72 表 2 充填体的基本物理力学参数
Table 2. Basic mechanical parameters of backfilling
密度/
(g·cm−3)波速/
(m·s−1)波阻抗/
(kg·m−2·s−1)抗压强度/
MPa弹性模量/
GPa1.86 1989.8 3.7×106 0.6 3.05 表 3 岩石杆的参数及模拟结果
Table 3. Parameters of the rock bars and simulation results
材料 初始入射
电压/mV岩石密度/
(g·cm−3)岩石波速/
(m·s−1)岩石杆波阻抗/
(kg·m−2·s−1)充填体波阻抗/
(kg·m−2·s−1)U1/
mVU2/
mV波阻抗匹配
系数K透反射衰减
系数β/%绿砂岩 9.10 2.470 3399.0 5.38×106 3.7×106 5.90 2.736 1.45 46.38 黄砂岩[16] 2.182 2467.0 5.86×106 6.09 2.620 1.58 43.02 花岗岩-Ⅰ[16] 2.561 2981.0 7.63×106 6.31 2.372 2.06 37.59 玄武岩 2.979 5988.0 8.40×106 6.42 2.326 2.27 36.23 灰砂岩[7] 2.571 3907.0 1.00×107 6.51 2.305 2.71 35.40 红砂岩[16] 2.383 2457.0 1.16×107 6.55 2.163 3.14 33.03 花岗岩-Ⅱ[16] 2.627 4425.0 1.24×107 6.72 1.995 3.34 29.69 花岗岩-Ⅲ 2.880 4291.0 1.39×107 6.85 1.895 3.75 27.67 玄武岩[16] 2.828 6360.0 1.43×107 6.79 1.705 3.85 25.11 石灰岩[16] 2.716 6772.0 1.78×107 7.40 1.549 4.82 20.93 大理岩 2.920 4754.5 1.80×107 7.32 1.450 4.86 19.81 花岗岩-Ⅳ[7] 2.632 5415.0 1.84×107 7.30 1.265 4.97 17.33 表 4 岩石基本力学参数
Table 4. Basic mechanical parameters of the rock
材料 密度/(g·cm−3) 波速/(m·s−1) 波阻抗/(kg·m−2·s−1) 抗压强度/MPa 抗拉强度/MPa 弹性模量/GPa 绿砂岩 2.47 3399.17 8.396×106 29.8 2.40 8.4 花岗岩 2.88 4290.93 1.236×107 87.6 6.82 26.3 大理岩 2.92 4754.50 1.388×106 98.5 8.12 30.0 玄武岩 2.98 5988.33 1.785×106 182.5 15.23 49.4 表 5 四种岩石杆件-充填体组合的动态力学参数
Table 5. Dynamic mechanical parameters of four rock bar-backfilling
岩杆种类 黏性系数/
(MPa·s)摆锤加载速度/
(m·s−1)应变率/s−1 波阻抗匹配
系数K波阻抗/
(kg·m−2·s−1)电压幅值/V 透射波峰值/
入射波峰值入射 反射 透射 绿砂岩 1.00 2.57 47.95 2.269 8.396×106 0.553 0.507 0.045 0.16 花岗岩 0.60 46.67 3.340 1.236×107 0.541 0.474 0.033 0.13 大理岩 0.50 45.55 3.752 1.388×106 0.525 0.436 0.019 0.11 玄武岩 0.30 48.76 4.823 1.785×106 0.520 0.436 0.013 0.10 钢杆 0 46.69 0.634 0.619 0 0 表 6 信噪比与应变率的关系
Table 6. Relationship betweensignal-to-noise ratio and strain rate
岩石杆件 应变率/s−1 信号电压/V 噪音电压/μV Rsn/dB 绿砂岩 39.56 0.040 683 35.35 47.95 0.045 667 36.59 58.83 0.051 652 37.86 67.21 0.060 663 39.08 79.02 0.068 669 40.10 花岗岩 35.62 0.029 646 32.96 45.66 0.033 667 33.90 54.32 0.038 652 35.31 66.27 0.042 663 36.03 77.27 0.047 669 36.93 大理岩 33.22 0.015 652 26.94 42.55 0.017 663 28.23 55.79 0.023 667 30.84 68.23 0.028 652 32.65 79.36 0.032 669 33.59 玄武岩 39.43 0.013 683 25.78 48.76 0.016 667 27.66 58.65 0.020 652 29.60 69.27 0.023 663 30.65 80.67 0.025 669 31.34 -
[1] 韩斌, 王贤来, 肖卫国. 基于多元非线性回归的井下采场充填体强度预测及评价 [J]. 采矿与安全工程学报, 2012, 29(5): 714–718.HAN B, WANG X L, XIAO W G. Estimation and evaluation of backfill strength in underground stope based on multivariate nonlinear regression analysis [J]. Journal of Mining and Safety Engineering, 2012, 29(5): 714–718. [2] 王新民, 薛希龙, 张钦礼, 等. 碎石和磷石膏联合胶结充填最佳配比及应用 [J]. 中南大学学报(自然科学版), 2015, 46(10): 3767–3773. DOI: 10.11817/j.issn.1672-7207.2015.10.029.WANG X M, XUE X L, ZHANG Q L, et al. Optimum ratio and application of joint cemented backfill with crushed rock and phosphogypsum [J]. Journal of Central South University (Science and Technology), 2015, 46(10): 3767–3773. DOI: 10.11817/j.issn.1672-7207.2015.10.029. [3] 王礼立, 胡时胜. 应力波基础 [M]. 北京: 国防工业出版社, 2023. [4] 李夕兵, 古德生, 赖海辉, 等. 岩石与炸药波阻抗匹配的能量研究 [J]. 中南矿冶学院学报, 1992, 23(1): 18–23.LI X B, GU D S, LAI H H, et al. The energy analysis on matching of acoustic impedance between rock and explosive [J]. Journal of Central South Institute of Mining and Metallurgy, 1992, 23(1): 18–23. [5] 杨小林. 炸药岩石阻抗匹配与爆炸应力、块度的试验研究 [J]. 煤炭学报, 1991, 16(1): 89–96.YANG X L. Study of blasting stress, size and matched impedance between explosive and rock [J]. Journal of China Coal Society, 1991, 16(1): 89–96. [6] 刘希灵, 崔佳慧, 李夕兵, 等. 不同类型岩石中弹性波衰减特性研究 [J]. 岩石力学与工程学报, 2018, 37(S1): 3223–3230. DOI: 10.13722/j.cnki.jrme.2017.0604.LIU X L, CUI J H, LI X B, et al. Study on attenuation characteristics of elastic wave in different types of rocks [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S1): 3223–3230. DOI: 10.13722/j.cnki.jrme.2017.0604. [7] 杨仁树, 李炜煜, 李永亮, 等. 3种岩石动态拉伸力学性能试验与对比分析 [J]. 煤炭学报, 2020, 45(9): 3107–3118. DOI: 10.13225/j.cnki.jccs.2019.0853.YANG R S, LI W Y, LI Y L, et al. Comparative analysis on dynamic tensile mechanical properties of three kinds of rocks [J]. Journal of China Coal Society, 2020, 45(9): 3107–3118. DOI: 10.13225/j.cnki.jccs.2019.0853. [8] 杨仁树, 李炜煜, 方士正, 等. 波阻抗对岩石动力学特性影响的模拟试验研究 [J]. 振动与冲击, 2020, 39(3): 178–185. DOI: 10.13465/j.cnki.jvs.2020.03.024.YANG R S, LI W Y, FANG S Z, et al. Tests for effects of wave impedance on rock’s dynamic performance [J]. Journal of Vibration and Shock, 2020, 39(3): 178–185. DOI: 10.13465/j.cnki.jvs.2020.03.024. [9] 魏修成, 卢明辉, 巴晶, 等. 含黏滞流体各向异性孔隙介质中弹性波的频散和衰减 [J]. 地球物理学报, 2008, 51(1): 213–220. DOI: 10.3321/j.issn:0001-5733.2008.01.026.WEI X C, LU M H, BA J, et al. Dispersion and attenuation of elastic waves in a viscous fluid-saturated anisotropic porous solid [J]. Chinese Journal of Geophysics, 2008, 51(1): 213–220. DOI: 10.3321/j.issn:0001-5733.2008.01.026. [10] 王观石, 李长洪, 胡世丽, 等. 岩体中应力波幅值随时空衰减的关系 [J]. 岩土力学, 2010, 31(11): 3487–3492. DOI: 10.3969/j.issn.1000-7598.2010.11.022.WANG G S, LI C H, HU S L, et al. A study of time-and spatial-attenuation of stress wave amplitude in rock mass [J]. Rock and Soil Mechanics, 2010, 31(11): 3487–3492. DOI: 10.3969/j.issn.1000-7598.2010.11.022. [11] LI J C, MA G W. Experimental study of stress wave propagation across a filled rock joint [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(3): 471–478. DOI: 10.1016/j.ijrmms.2008.11.006. [12] LI J C, MA G W. Analysis of blast wave interaction with a rock joint [J]. Rock Mechanics and Rock Engineering, 2010, 43(6): 777–787. DOI: 10.1007/s00603-009-0062-0. [13] 牛雷雷. 黏弹性波传播及其诱致岩石损伤与破裂的研究 [D]. 沈阳: 东北大学, 2016.NIU L L. Viscoelastic wave propagation and indceddamage and failure of the rock [D]. Shenyang: Northeastern University, 2016. [14] NIU L L, ZHU W C, LI S H, et al. Determining the viscosity coefficient for viscoelastic wave propagation in rock bars [J]. Rock Mechanics and Rock Engineering, 2018, 51(5): 1347–1359. DOI: 10.1007/s00603-018-1407-3. [15] 王梦, 范立峰. 岩体内应力波传播的研究进展与展望 [J]. 北京工业大学学报, 2021, 47(7): 802–814. DOI: 10.11936/bjutxb2021030015.WANG M, FAN L F. Research progress and prospect of stress wave propagation through rock mass [J]. Journal of Beijing University of Technology, 2021, 47(7): 802–814. DOI: 10.11936/bjutxb2021030015. [16] 李炜煜. 冲击荷载下波阻抗对岩石动态力学响应影响的试验研究 [D]. 北京: 中国矿业大学(北京), 2021. DOI: 10.27624/d.cnki.gzkbu.2021.000006.LI W Y. Experimental study on the influence of wave impedance on rock dynamic mechanical response under impact load [D]. Beijing: China University of Mining & Technology (Beijing), 2021. DOI: 10.27624/d.cnki.gzkbu.2021.000006. [17] 李军强, 刘宏昭, 王忠民. 线性粘弹性本构方程及其动力学应用研究综述 [J]. 振动与冲击, 2005, 24(2): 116–121. DOI: 10.3969/j.issn.1000-3835.2005.02.030.LI J Q, LIU H Z, WANG Z M. Review on the linear constitutive equation and its dynamics applications to viscoelastic materials [J]. Journal of Vibration and Shock, 2005, 24(2): 116–121. DOI: 10.3969/j.issn.1000-3835.2005.02.030. [18] 苑春方, 彭苏萍, 张中杰, 等. Kelvin-Voigt均匀黏弹性介质中传播的地震波 [J]. 中国科学D辑地球科学, 2005, 35(10): 957–962. DOI: 10.3969/j.issn.1674-7240.2005.10.006.YUAN C F, PENG S P, ZHANG Z J, et al. Seismic wave propagating in Kelvin-Voigt homogeneous visco-elastic media[J]. Science in China Series D, 2006, 49(2): 147–153. DOI: 10.3969/j.issn.1674-7240.2005.10.006. [19] 陶子豪. 动载下不同强度胶结充填体的动态响应特性研究 [D]. 昆明: 昆明理工大学, 2020. DOI: 10.27200/d.cnki.gkmlu.2020.000576. [20] 谢新良, 王博文, 张露予, 等. 基于应力波反射的磁致伸缩位移传感器测量方法及信号分析 [J]. 仪表技术与传感器, 2017(5): 5–9. DOI: 10.3969/j.issn.1002-1841.2017.05.002.XIE X L, WANG B W, ZHANG L Y, et al. Measurement method for magnetostrictive displacement sensor based on stress wave reflection and signal analysis [J]. Instrument Technique and Sensor, 2017(5): 5–9. DOI: 10.3969/j.issn.1002-1841.2017.05.002. [21] 李地元, 成腾蛟, 周韬, 等. 冲击载荷作用下含孔洞大理岩动态力学破坏特性试验研究 [J]. 岩石力学与工程学报, 2015, 34(2): 249–260. DOI: 10.13722/j.cnki.jrme.2015.02.004.LI D Y, CHENG T J, ZHOU T, et al. Experimental study of the dynamic strength and fracturing characteristics of marble specimens with a single hole under impact loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 249–260. DOI: 10.13722/j.cnki.jrme.2015.02.004.