循环冲击作用下冻融红砂岩动力学特性与损伤机理

张蓉蓉 沈永辉 马冬冬 平琦 杨毅

张蓉蓉, 沈永辉, 马冬冬, 平琦, 杨毅. 循环冲击作用下冻融红砂岩动力学特性与损伤机理[J]. 爆炸与冲击, 2024, 44(8): 081443. doi: 10.11883/bzycj-2023-0449
引用本文: 张蓉蓉, 沈永辉, 马冬冬, 平琦, 杨毅. 循环冲击作用下冻融红砂岩动力学特性与损伤机理[J]. 爆炸与冲击, 2024, 44(8): 081443. doi: 10.11883/bzycj-2023-0449
ZHANG Rongrong, SHEN Yonghui, MA Dongdong, PING Qi, YANG Yi. Dynamic characteristics and damage mechanism of freeze-thaw treated red sandstone under cyclic impact[J]. Explosion And Shock Waves, 2024, 44(8): 081443. doi: 10.11883/bzycj-2023-0449
Citation: ZHANG Rongrong, SHEN Yonghui, MA Dongdong, PING Qi, YANG Yi. Dynamic characteristics and damage mechanism of freeze-thaw treated red sandstone under cyclic impact[J]. Explosion And Shock Waves, 2024, 44(8): 081443. doi: 10.11883/bzycj-2023-0449

循环冲击作用下冻融红砂岩动力学特性与损伤机理

doi: 10.11883/bzycj-2023-0449
基金项目: 国家自然科学基金(52074005);安徽省博士后科学基金(2021B556)
详细信息
    作者简介:

    张蓉蓉(1990- ),女,博士,副教授,zrrah187@163.com

    通讯作者:

    马冬冬(1991- ),男,博士,副教授,dongdonm@126.com

  • 中图分类号: O383; TU45

Dynamic characteristics and damage mechanism of freeze-thaw treated red sandstone under cyclic impact

  • 摘要: 为探索循环动力扰动作用下冻融岩体的强度和变形特性及损伤机理,开展了两种冲击气压下冻融红砂岩的循环冲击试验,研究了循环冲击次数和冻融次数对应力波传播、动态应力-应变曲线、峰值应力和峰值应变的影响规律;基于Lemaitre应变等效原理,提出了能够综合考虑循环冲击和冻融影响的累积损伤因子的计算方法,分析了冻融和循环冲击作用后红砂岩的微观结构特征。结果表明:循环冲击荷载下不同冻融次数处理后的红砂岩试样均呈拉伸破坏模式;红砂岩试样可承受的循环冲击次数与冻融次数呈负相关,冻融75次后试样在首次冲击后即达到破坏状态;循环冲击次数主要影响透射波的起跳点、峰值点对应的横坐标和振幅以及反射波的振幅,而冻融循环次数对第一次冲击时透射波的起跳点、峰值点对应的横坐标和振幅影响较大;红砂岩试样累积损伤因子与动态峰值应力呈现较好的负相关变化规律;冻融和循环冲击复合作用后红砂岩内部裂纹沿颗粒边界扩展且与孔洞连接形成较为复杂的网络。
  • 图  1  红砂岩试样

    Figure  1.  Red sandstone specimens

    图  2  冻融循环参数

    Figure  2.  F-T parameters

    图  3  SHPB系统

    Figure  3.  SHPB system

    图  4  循环冲击下不同冻融循环次数红砂岩破坏形态

    Figure  4.  Failure modes of red sandstone after different F-T numbers under cyclic impact

    图  5  冻融次数与循环冲击次数的关系

    Figure  5.  Relationship between F-T cycle number and cyclic impact time

    图  6  循环冲击原始波形

    Figure  6.  Original waveforms of cyclic impact

    图  7  红砂岩动态应力平衡曲线

    Figure  7.  Dynamic stress balance curves of red sandstone

    图  8  0.16 MPa冲击气压下冻融后红砂岩试样的循环冲击动态应力-应变曲线

    Figure  8.  Cyclic impact dynamic stress-strain curves of freeze-thaw cycles treated red sandstone specimen under 0.16 MPa impact pressure

    图  9  0.18 MPa冲击气压下冻融后红砂岩试样的循环冲击动态应力-应变曲线

    Figure  9.  Cyclic impact dynamic stress-strain curves of freeze-thaw cycles treated red sandstone specimen under 0.18 MPa impact pressure

    图  10  红砂岩试样动态峰值应力与循环冲击次数的关系

    Figure  10.  Relationship between dynamic peak stress of red sandstone specimen and cyclic impact number

    图  11  红砂岩试样动态峰值应变与循环冲击次数的关系

    Figure  11.  Relationship between dynamic peak strain of red sandstone specimen and cyclic impact times

    图  12  红砂岩试样累积损伤因子与循环冲击次数的关系

    Figure  12.  Relationship between cumulative damage factor of red sandstone and cyclic impact time

    图  13  红砂岩试样累积损伤因子与峰值应力的关系

    Figure  13.  Relationship between cumulative damage factor of red sandstone and peak stress

    图  14  未经历冻融循环的红砂岩试样在循环冲击作用后微观结构

    Figure  14.  Microstructure of a red sandstone specimen after cyclic impacts without F-T cycle

    图  15  经历10次冻融循环的红砂岩试样在循环冲击作用后微观结构

    Figure  15.  Microstructure of a red sandstone specimen after 10 F-T cycles and then cyclic impacts

    图  16  经历25次冻融循环的红砂岩试样在循环冲击作用后微观结构

    Figure  16.  Microstructure of a red sandstone specimen after 25 F-T cycles and then cyclic impacts

    图  17  经历40次冻融循环的红砂岩试样在循环冲击作用后微观结构

    Figure  17.  Microstructure of a red sandstone specimen after 40 F-T cycles and then cyclic impacts

    图  18  经历55次冻融循环的红砂岩试样在循环冲击作用后微观结构

    Figure  18.  Microstructure of a red sandstone specimen after 55 F-T cycles and then cyclic impacts

    图  19  经历75次冻融循环的红砂岩试样在循环冲击作用后微观结构

    Figure  19.  Microstructure of a red sandstone specimen after 75 F-T cycles and then cyclic impacts

    表  1  红砂岩试样物理力学参数

    Table  1.   Physical and mechanical parameters of red sandstone specimen

    密度/(kg·m−3 孔隙率/% 静态抗压强度/MPa 静态变形模量/GPa 动态抗压强度/MPa 动态变形模量/GPa
    2391 7.61 76.65 4.65 97.53 19.32
     注:准静态应变率为1.67×10−4 s−1,动态应变率为212 s−1
    下载: 导出CSV

    表  2  冲击气压为0.16 MPa时红砂岩试样的动态峰值应力、峰值应变和变形模量

    Table  2.   Dynamic peak stresses, peak strains, and deformation moduli of red sandstone specimens at the impact gas pressure of 0.16 MPa

    冻融循环
    次数
    循环冲击
    次数
    动态峰值
    应力/MPa
    动态峰值
    应变
    动态变形
    模量/GPa
    冻融循环
    次数
    循环冲击
    次数
    动态峰值
    应力/MPa
    动态峰值
    应变
    动态变形
    模量/GPa
    0 1 29.08 0.0038 11.13 25 1 28.36 0.0043 9.35
    2 30.12 0.0035 12.48 2 26.63 0.0044 8.02
    3 28.40 0.0042 9.35 3 26.58 0.0046 7.84
    4 26.59 0.0045 8.01 4 25.97 0.0051 7.48
    5 24.08 0.0050 7.60 5 24.78 0.0052 6.23
    6 23.49 0.0052 6.53 6 20.13 0.0052 5.73
    7 21.39 0.0056 5.14 7 19.79 0.0058 3.39
    8 20.56 0.0061 4.48 40 1 27.30 0.0045 8.49
    10 1 29.24 0.0041 10.25 2 26.46 0.0048 8.01
    2 28.76 0.0043 9.36 3 25.90 0.0049 7.48
    3 28.36 0.0044 7.84 4 23.52 0.0052 6.54
    4 27.11 0.0044 7.45 5 19.04 0.0054 4.98
    5 26.76 0.0045 6.76 55 1 22.08 0.0051 6.06
    6 26.73 0.0054 5.36 2 21.38 0.0057 5.12
    7 21.39 0.0056 5.13 3 20.52 0.0060 4.48
    8 17.64 0.0058 3.56 75 1 13.41 0.0063 4.98
    下载: 导出CSV

    表  3  冲击气压为0.18 MPa时红砂岩试样的动态峰值应力、峰值应变和变形模量

    Table  3.   Dynamic peak stresses, peak strains, and deformation moduli of red sandstone specimens at the impact gas pressure of 0.18 MPa

    冻融循环
    次数
    循环冲击
    次数
    动态峰值
    应力/MPa
    动态峰值
    应变
    动态变形
    模量/GPa
    冻融循环
    次数
    循环冲击
    次数
    动态峰值
    应力/MPa
    动态峰值
    应变
    动态变形
    模量/GPa
    0 1 39.35 0.0035 13.25 25 1 36.23 0.0043 10.83
    2 38.93 0.0038 12.35 2 34.57 0.0051 8.91
    3 37.88 0.0042 10.98 3 32.57 0.0053 8.00
    4 36.21 0.0044 9.74 4 27.31 0.0054 7.39
    5 34.42 0.0047 8.18 5 24.83 0.0058 5.61
    6 31.50 0.0053 6.51 6 24.34 0.0064 4.78
    7 22.48 0.0054 4.56 40 1 34.69 0.0048 8.56
    10 1 39.93 0.0040 12.66 2 29.24 0.0051 6.86
    2 39.33 0.0042 11.92 3 26.31 0.0055 5.33
    3 36.21 0.0044 10.83 4 21.87 0.0061 4.49
    4 31.90 0.0045 9.35 55 1 27.92 0.0051 7.53
    5 29.62 0.0049 7.58 2 20.65 0.0055 5.34
    6 26.68 0.0052 5.16 75 1 21.14 0.0062 5.23
    7 25.25 0.0057 4.76
    下载: 导出CSV
  • [1] 马泗洲, 刘科伟, 杨家彩, 等. 初始应力下岩体爆破损伤特性及破裂机理 [J]. 爆炸与冲击, 2023, 43(10): 105201. DOI: 10.11883/bzycj-2023-0151.

    MA S Z, LIU K W, YANG J C, et al. Blast-induced damage characteristics and fracture mechanism of rock mass under initial stress [J]. Explosion and Shock Waves, 2023, 43(10): 105201. DOI: 10.11883/bzycj-2023-0151.
    [2] 倪苏黔, 徐颖, 葛进进, 等. 干-酸侵蚀下深地白砂岩动静态损伤特性研究 [J]. 岩石力学与工程学报, 2023, 42(10): 2528–2539. DOI: 10.13722/j.cnki.jrme.2022.1218.

    NI S Q, XU Y, GE J J, et al. Dynamic and static damage characteristics of deep-earth white sandstone under dry-acid erosion [J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(10): 2528–2539. DOI: 10.13722/j.cnki.jrme.2022.1218.
    [3] 王俊奇, 汪志刚. 确定裂隙岩体渗透系数张量的一维环单元模型研究 [J]. 水利学报, 2023, 54(5): 575–586. DOI: 10.13243/j.cnki.slxb.20220458.

    WANG J Q, WANG Z G. Study on one-dimensional ring unit model for determining the permeability coefficient tensor of fractured rock masses [J]. Journal of Hydraulic Engineering, 2023, 54(5): 575–586. DOI: 10.13243/j.cnki.slxb.20220458.
    [4] SONG Z Y, WANG Y, KONIETZKY H, et al. Mechanical behavior of marble exposed to freeze-thaw-fatigue loading [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 138: 104648. DOI: 10.1016/j.ijrmms.2021.104648.
    [5] 高要辉, 张春生, 苏方声, 等. 深部硬岩剪切边界下应力诱发片帮的机制研究 [J]. 岩土力学, 2022, 43(4): 1103–1111, 1122. DOI: 10.16285/j.rsm.2021.1220.

    GAO Y H, ZHANG C S, SU F S, et al. Mechanism of stress-induced spalling of deep hard rocks under shear boundary condition [J]. Rock and Soil Mechanics, 2022, 43(4): 1103–1111, 1122. DOI: 10.16285/j.rsm.2021.1220.
    [6] 金解放, 张睿, 王熙博, 等. 岩石梯度应力加载试验装置研制及初步试验研究 [J]. 岩石力学与工程学报, 2020, 39(8): 1547–1559. DOI: 10.13722/j.cnki.jrme.2019.1206.

    JIN J F, ZHANG R, WANG X B, et al. Development of a rock gradient stress loading test device and its primary application [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(8): 1547–1559. DOI: 10.13722/j.cnki.jrme.2019.1206.
    [7] 姜亚成, 周磊, 朱哲明, 等. 冻融循环对含纯Ⅰ型裂隙围岩的动态起裂特性影响规律 [J]. 爆炸与冲击, 2021, 41(4): 043104. DOI: 10.11883/bzycj-2020-0330.

    JIANG Y C, ZHOU L, ZHU Z M, et al. Effects of freeze-thaw cycles on dynamic fracture initiation characteristics of surrounding rock with pure Ⅰ type fracture under impact loads [J]. Explosion and Shock Waves, 2021, 41(4): 043104. DOI: 10.11883/bzycj-2020-0330.
    [8] 宋凯文, 黄俊红, 罗忆, 等. 循环冲击荷载下的礁灰岩力学特性研究 [J]. 岩石力学与工程学报, 2023, 42(S2): 3956–3965. DOI: 10.13722/j.cnki.jrme.2022.0935.

    SONG K W, DAI J H, LUO Y, et al. Mechanical properties of reef limestone under cyclic impact loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(S2): 3956–3965. DOI: 10.13722/j.cnki.jrme.2022.0935.
    [9] 罗宁, 索云琛, 张浩浩, 等. 循环冲击层理煤岩动力学行为及破坏规律研究 [J]. 爆炸与冲击, 2023, 43(4): 043102. DOI: 10.11883/bzycj-2022-0253.

    LUO N, SUO Y C, ZHANG H H, et al. On dynamic behaviors and failure of bedding coal rock subjected to cyclic impact [J]. Explosion and Shock Waves, 2023, 43(4): 043102. DOI: 10.11883/bzycj-2022-0253.
    [10] LI R, ZHU J B, QU H L, et al. An experimental investigation on fatigue characteristics of granite under repeated dynamic tensions [J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 158: 105185. DOI: 10.1016/j.ijrmms.2022.105185.
    [11] ZHOU T, HAN Z Y, LI D Y, et al. Experimental study of the mechanical and fracture behavior of flawed sandstone subjected to coupled static-repetitive impact loading [J]. Theoretical and Applied Fracture Mechanics, 2022, 117: 103161. DOI: 10.1016/j.tafmec.2021.103161.
    [12] LI X B, LOK T S, ZHAO J. Dynamic characteristics of granite subjected to intermediate loading rate [J]. Rock Mechanics and Rock Engineering, 2005, 38(1): 21–39. DOI: 10.1007/s00603-004-0030-7.
    [13] 王志亮, 杨辉, 田诺成. 单轴循环冲击下花岗岩力学特性与损伤演化机理 [J]. 哈尔滨工业大学学报, 2020, 52(2): 59–66. DOI: 10.11918/201811085.

    WANG Z L, YANG H, TIAN N C. Mechanical property and damage evolution mechanism of granite under uniaxial cyclic impact [J]. Journal of Harbin Institute of Technology, 2020, 52(2): 59–66. DOI: 10.11918/201811085.
    [14] WANG X Y, LIU Z Y, GAO X C, et al. Dynamic characteristics and fracture process of marble under repeated impact loading [J]. Engineering Fracture Mechanics, 2022, 276: 108926. DOI: 10.1016/j.engfracmech.2022.108926.
    [15] 李地元, 孙小磊, 周子龙, 等. 多次冲击荷载作用下花岗岩动态累计损伤特性 [J]. 实验力学, 2016, 31(6): 827–835. DOI: 10.7520/1001-4888-16-009.

    LI D Y, SUN X L, ZHOU Z L, et al. On the dynamic accumulated damage characteristics of granite subjected to repeated impact load action [J]. Journal of Experimental Mechanics, 2016, 31(6): 827–835. DOI: 10.7520/1001-4888-16-009.
    [16] MENG X Z, ZHANG H M, YUAN C, et al. Damage constitutive prediction model for rock under freeze-thaw cycles based on mesoscopic damage definition [J]. Engineering Fracture Mechanics, 2023, 293: 109685. DOI: 10.1016/j.engfracmech.2023.109685.
    [17] NIU C Y, ZHU Z M, ZHOU L, et al. Study on the microscopic damage evolution and dynamic fracture properties of sandstone under freeze-thaw cycles [J]. Cold Regions Science and Technology, 2021, 191: 103328. DOI: 10.1016/j.coldregions.2021.103328.
    [18] 肖鹏, 陈有亮, 杜曦, 等. 冻融循环作用下砂岩的力学特性及细观损伤本构模型研究 [J]. 岩土工程学报, 2023, 45(4): 805–815. DOI: 10.11779/CJGE20220219.

    XIAO P, CHEN Y L, DU X, et al. Mechanical properties of sandstone under freeze-thaw cycles and studies on meso-damage constitutive model [J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 805–815. DOI: 10.11779/CJGE20220219.
    [19] 于洋, 徐倩, 刁心宏, 等. 循环冲击对围压作用下砂岩特征的影响 [J]. 华中科技大学学报(自然科学版), 2019, 47(6): 127–132. DOI: 10.13245/j.hust.190623.

    YU Y, XU Q, DIAO X H, et al. Effect of cyclic impact on sandstone characteristics under confining pressures [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(6): 127–132. DOI: 10.13245/j.hust.190623.
    [20] 唐礼忠, 程露萍, 王春, 等. 高静载条件下受频繁动力扰动时蛇纹岩动力学特性研究 [J]. 岩土力学, 2016, 37(10): 2737–2745. DOI: 10.16285/j.rsm.2016.10.001.

    TANG L Z, CHENG L P, WANG C, et al. Dynamic characteristics of serpentinite under condition of high static load and frequent dynamic disturbance [J]. Rock and Soil Mechanics, 2016, 37(10): 2737–2745. DOI: 10.16285/j.rsm.2016.10.001.
    [21] 闻磊, 梁旭黎, 冯文杰, 等. 冲击损伤砂岩动静组合加载力学特性研究 [J]. 岩土力学, 2020, 41(11): 3540–3552. DOI: 10.16285/j.rsm.2020.0214.

    WEN L, LIANG X L, FENG W J, et al. An investigation of the mechanical properties of sandstone under coupled static and dynamic loading [J]. Rock and Soil Mechanics, 2020, 41(11): 3540–3552. DOI: 10.16285/j.rsm.2020.0214.
    [22] 吕晓聪, 许金余, 赵德辉, 等. 冲击荷载循环作用下砂岩动态力学性能的围压效应研究 [J]. 工程力学, 2011, 28(1): 138–144.

    LV X C, XU J Y, ZHAO D H, et al. Research on confining pressure effect of sandstone dynamic mechanical performance under the cyclical impact loadings [J]. Engineering Mechanics, 2011, 28(1): 138–144.
    [23] 田诺成, 王志亮, 熊峰, 等. 循环冲击荷载下轴压对花岗岩动力学特性的影响 [J]. 哈尔滨工业大学学报, 2021, 53(5): 156–164. DOI: 10.11918/201908134.

    TIAN N C, WANG Z L, XIONG F, et al. Influence of axial pressure on dynamic mechanical properties of granite under cyclic impact loading [J]. Journal of Harbin Institute of Technology, 2021, 53(5): 156–164. DOI: 10.11918/201908134.
    [24] 金解放, 李夕兵, 殷志强, 等. 循环冲击下波阻抗定义岩石损伤变量的研究 [J]. 岩土力学, 2011, 32(5): 1385–1393, 1410. DOI: 10.3969/j.issn.1000-7598.2011.05.017.

    JIN J F, LI X B, YIN Z Q, et al. A method for defining rock damage variable by wave impedance under cyclic impact loadings [J]. Rock and Soil Mechanics, 2011, 32(5): 1385–1393, 1410. DOI: 10.3969/j.issn.1000-7598.2011.05.017.
    [25] SHU R H, YIN T B, LI X B, et al. Effect of thermal treatment on energy dissipation of granite under cyclic impact loading [J]. Transactions of Nonferrous Metals Society of China, 2019, 29(2): 385–396. DOI: 10.1016/S1003-6326(19)64948-4.
    [26] WANG Z L, TIAN N C, WANG J G, et al. Experimental study on damage mechanical characteristics of heat-treated granite under repeated impact [J]. Journal of Materials in Civil Engineering, 2018, 30(11): 04018274. DOI: 10.1061/(ASCE)MT.1943-5533.0002465.
    [27] WANG Z L, TIAN N C, WANG J G, et al. Mechanical response and energy dissipation analysis of heat-treated granite under repeated impact loading [J]. Computers, Materials & Continua, 2019, 59(1): 275–296. DOI: 10.32604/cmc.2019.04247.
    [28] WANG P, YIN T B, LI X B, et al. Dynamic properties of thermally treated granite subjected to cyclic impact loading [J]. Rock Mechanics and Rock Engineering, 2019, 52(4): 991–1010. DOI: 10.1007/s00603-018-1606-y.
    [29] 贾蓬, 毛松泽, 卢佳亮, 等. 冻融循环对绿砂岩动态抗压性能影响的试验研究 [J]. 北京理工大学学报, 2023, 43(8): 841–851. DOI: 10.15918/j.tbit1001-0645.2022.194.

    JIA P, MAO S Z, LU J L, et al. Experimental study on the effect of freeze-thaw cycles on the dynamic characteristics of green sandstone [J]. Transactions of Beijing Institute of Technology, 2023, 43(8): 841–851. DOI: 10.15918/j.tbit1001-0645.2022.194.
    [30] 孟凡东, 翟越, 李宇白, 等. 冻融循环作用后砂岩的动态抗拉性能及能量演化试验研究 [J]. 岩石力学与工程学报, 2021, 40(12): 2445–2453. DOI: 10.13722/j.cnki.jrme.2021.0289.

    MENG F D, ZHAI Y, LI Y B, et al. Experimental study on dynamic tensile properties and energy evolution of sandstone after freeze-thaw cycles [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(12): 2445–2453. DOI: 10.13722/j.cnki.jrme.2021.0289.
    [31] 张蓉蓉, 经来旺, 马冬冬. 冻融和热冲击循环作用后红砂岩SHPB试验和本构模型研究 [J]. 振动与冲击, 2022, 41(9): 267–275. DOI: 10.13465/j.cnki.jvs.2022.09.034.

    ZHANG R R, JING L W, MA D D. SHPB tests and constitutive model of red-sandstone after freeze-thaw and thermal shock cycles [J]. Journal of Vibration and Shock, 2022, 41(9): 267–275. DOI: 10.13465/j.cnki.jvs.2022.09.034.
    [32] MA Q Y, MA D D, YAO Z M. Influence of freeze-thaw cycles on dynamic compressive strength and energy distribution of soft rock specimen [J]. Cold Regions Science and Technology, 2018, 153: 10–17. DOI: 10.1016/j.coldregions.2018.04.014.
    [33] WANG P, XU J Y, LIU S, et al. A prediction model for the dynamic mechanical degradation of sedimentary rock after a long-term freeze-thaw weathering: Considering the strain-rate effect [J]. Cold Regions Science and Technology, 2016, 131: 16–23. DOI: 10.1016/j.coldregions.2016.08.003.
    [34] WANG P, XU J Y, FANG X Y, et al. Energy dissipation and damage evolution analyses for the dynamic compression failure process of red-sandstone after freeze-thaw cycles [J]. Engineering Geology, 2017, 221: 104–113. DOI: 10.1016/j.enggeo.2017.02.025.
    [35] ZHAI Y, MENG F D, LI Y B, et al. Research on dynamic compression failure characteristics and damage constitutive model of sandstone after freeze-thaw cycles [J]. Engineering Failure Analysis, 2022, 140: 106577. DOI: 10.1016/j.engfailanal.2022.106577.
    [36] HATHEWAY A W. The complete ISRM suggested methods for rock characterization, testing and monitoring; 1974—2006 [J]. Environmental and Engineering Geoscience, 2009, 15(1): 47–48. DOI: 10.2113/gseegeosci.15.1.47.
    [37] 中华人民共和国住房和城乡建设部. 工程岩体试验方法标准: GB/T 50266—2013 [S]. 北京: 中国计划出版社, 2013.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test methods of engineering rock mass: GB/T 50266—2013 [S]. Beijing: China Planning Press, 2013.
    [38] 申艳军, 杨更社, 荣腾龙, 等. 岩石冻融循环试验建议性方案探讨 [J]. 岩土工程学报, 2016, 38(10): 1775–1782. DOI: 10.11779/CJGE201610005.

    SHEN Y J, YANG G S, RONG T L, et al. Proposed scheme for freeze-thaw cycle tests on rock [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1775–1782. DOI: 10.11779/CJGE201610005.
    [39] ZHANG R R, YANG Y, MA D D, et al. Experimental study on effect of freeze-thaw cycles on dynamic mode-Ⅰ fracture properties and microscopic damage evolution of sandstone [J]. Engineering Fracture Mechanics, 2023, 279: 109043. DOI: 10.1016/j.engfracmech.2023.109043.
    [40] 王宇, 翟成, 唐伟, 等. 循环冲击载荷作用下页岩动力学响应及能量耗散特征 [J]. 爆炸与冲击, 2023, 43(6): 063102. DOI: 10.11883/bzycj-2022-0248.

    WANG Y, ZHAI C, TANG W, et al. Dynamic response and energy dissipating characteristics of shale under cyclic impact loadings [J]. Explosion and Shock Waves, 2023, 43(6): 063102. DOI: 10.11883/bzycj-2022-0248.
    [41] 刘伟, 曾鹏, 闫雷, 等. 循环冲击下弱风化岩石力学特性与渗透率演化 [J]. 煤炭学报, 2021, 46(6): 1855–1863. DOI: 10.13225/j.cnki.jccs.2020.0066.

    LIU W, ZENG P, YAN L, et al. Mechanical properties and permeability evolution of weakly weathered rocks under cyclic impact [J]. Journal of China Coal Society, 2021, 46(6): 1855–1863. DOI: 10.13225/j.cnki.jccs.2020.0066.
    [42] 金解放, 李夕兵, 常军然, 等. 循环冲击作用下岩石应力应变曲线及应力波特性 [J]. 爆炸与冲击, 2013, 33(6): 613–619. DOI: 10.11883/1001-1455(2013)06-0613-07.

    JIN J F, LI X B, CHANG J R, et al. Stress-strain curve and stress wave characteristics of rock subjected to cyclic impact loadings [J]. Explosion and Shock Waves, 2013, 33(6): 613–619. DOI: 10.11883/1001-1455(2013)06-0613-07.
    [43] MA D D, XIANG H S, MA Q Y, et al. Dynamic damage constitutive model of frozen silty soil with prefabricated crack under uniaxial load [J]. Journal of Engineering Mechanics, 2021, 147(6): 104021033. DOI: 10.1061/(ASCE)EM.1943-7889.0001933.
    [44] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 煤和岩石物理力学性质测定方法 第8部分: 煤和岩石变形参数测定方法: GB/T 23561.8—2009 [S]. 北京: 中国标准出版社, 2009.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Methods for determining the physical and mechanical properties of coal and rock - Part 8: Methods for determining the deformation parameters of coal and rock: GB/T 23561.8—2009 [S]. Beijing: Standards Press of China, 2009.
    [45] ASTM. Standard test methods for compressive strength and elastic moduli of intact rock core specimens under varying states of stress and temperatures: ASTM D7012-14e1 [S]. Pennsylvania, USA: ASTM International, 2014.
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  145
  • HTML全文浏览量:  50
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-18
  • 修回日期:  2024-02-29
  • 网络出版日期:  2024-03-20
  • 刊出日期:  2024-08-05

目录

    /

    返回文章
    返回