典型金属粉末对FAE冲击波效应和热毁伤性能的影响

张蓓蓓 程扬帆 蒋八运 沈兆武 甘小红

张蓓蓓, 程扬帆, 蒋八运, 沈兆武, 甘小红. 典型金属粉末对FAE冲击波效应和热毁伤性能的影响[J]. 爆炸与冲击. doi: 10.11883/bzycj-2023-0465
引用本文: 张蓓蓓, 程扬帆, 蒋八运, 沈兆武, 甘小红. 典型金属粉末对FAE冲击波效应和热毁伤性能的影响[J]. 爆炸与冲击. doi: 10.11883/bzycj-2023-0465
ZHANG Beibei, CHENG Yangfan, JIANG Bayun, SHEN Zhaowu, GAN Xiaohong. Influence of typical metal powders on the shock wave effect and thermal damage performance of FAE[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0465
Citation: ZHANG Beibei, CHENG Yangfan, JIANG Bayun, SHEN Zhaowu, GAN Xiaohong. Influence of typical metal powders on the shock wave effect and thermal damage performance of FAE[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0465

典型金属粉末对FAE冲击波效应和热毁伤性能的影响

doi: 10.11883/bzycj-2023-0465
基金项目: 国家自然科学基金(12272001);安徽省高校自然科学基金杰青项目(2023AH020026)
详细信息
    作者简介:

    张蓓蓓(1998- ),女,博士研究生,664509656@qq.com

    通讯作者:

    程扬帆(1987- ),男,博士,教授,博士生导师,cyf518@mail.ustc.edu.cn

  • 中图分类号: O389; TF058

Influence of typical metal powders on the shock wave effect and thermal damage performance of FAE

  • 摘要: 为了探究典型金属粉末对燃料空气炸药(fuel air explosive,FAE)冲击波效应和热毁伤性能的影响,采用20 L球形液体爆炸测试系统并结合比色测温方法,深入研究了不同金属粉种类和含量下环氧丙烷(epoxypropane,PO)的燃爆特性、火焰结构及温度分布特征。实验结果表明:纯环氧丙烷的最佳质量浓度为780 g/m3,最大爆燃超压∆pmax = 0.799 MPa,最大压力上升速率(dp/dt)max = 52.438 MPa/s。添加Al粉、Ti粉和Mg粉的环氧丙烷最大燃爆超压、最大压力上升速率和最大火焰平均温度均随着金属粉末质量比(I)的增加而增大,而最大压力上升时间的变化趋势则与之相反;最大燃爆超压和最大火焰平均温度的变化规律一致,从大到小依次为:Al/PO、Mg/PO、Ti/PO,且当金属粉的质量比I = 40%时,3种固-液混合燃料的∆pmax值相较于纯环氧丙烷分别增加了12.00%、8.41%和11.54%;此外,最大压力上升速率和燃烧速率的变化规律一致,从大到小依次为:Mg/PO、Al/PO、Ti/PO,且当金属粉的质量比I = 40%时,3种固-液混合燃料的(dp/dt)max值相较于纯环氧丙烷分别增加了41.91%、39.60%和45.29%。研究结果表明,不同高能金属粉末在改善环氧丙烷燃爆性能方面各有优势,在FAE的配方设计时,应根据毁伤性能指标合理选择金属粉末作为含能添加剂。
  • 图  1  不同金属粉末的粒径分布图和扫描电镜图像

    Figure  1.  Particle size distribution and SEM images of different metal powders

    图  2  20 L球形液体爆炸测试系统

    Figure  2.  20 L spherical liquid explosion test system

    图  3  比色测温标定

    Figure  3.  Colorimetric temperature calibration

    图  4  不同质量浓度的环氧丙烷最大燃爆超压及最大压力上升速率

    Figure  4.  Maximum explosion overpressure and maximum pressure rise rate of epoxypropane with different mass concentrations

    图  5  燃料的燃爆压力时程曲线及压力上升速率

    Figure  5.  Explosion pressure time history curve and pressure rise rate of fuels

    图  6  固-液混合燃料燃爆压力、最大燃爆超压及最大压力上升速率

    Figure  6.  Explosion pressure, maximum explosion overpressure and maximum pressure rise rate of solid-liquid mixed fuels

    图  7  Al/PO、Ti/PO和Mg/PO固-液混合燃料爆炸参数柱状图

    Figure  7.  Al/PO, Ti/PO and Mg/PO solid-liquid mixed fuels explosion parameters histogram

    图  8  不同质量比固-液混合燃料的混合形态

    Figure  8.  Mixed forms of solid-liquid mixed fuels with different mass ratios

    图  9  I = 20%时Al/PO固-液混合燃料燃爆火焰传播过程

    Figure  9.  Flame propagation process of Al/PO solid-liquid mixed fuel when I = 20%

    图  10  4种不同质量比的Al/PO、Ti/PO、Mg/PO固-液混合燃料在t = 15 ms时刻的火焰图像

    Figure  10.  Al/PO, Ti/PO and Mg/PO solid-liquid mixed fuels flame images with four different mass ratios when t = 15 ms

    图  11  I = 20%时Al/PO固-液混合燃料火焰温度分布云图

    Figure  11.  Temperature distribution of Al/PO solid-liquid mixed fuel when I = 20%

    图  12  不同质量比下Al/PO固液混合燃料的平均火焰温度-时间曲线

    Figure  12.  Average flame temperature-time curves of Al/PO solid-liquid mixed fuels with different mass ratios

    图  13  不同质量比的Al/PO、Ti/PO、Mg/PO固-液混合燃料燃爆火焰的最大平均温度

    Figure  13.  Maximum average flame temperature of Al/PO, Ti/PO, Mg/PO solid-liquid mixed fuels with different mass ratios

    表  1  不同质量浓度环氧丙烷的最大燃爆超压及最大压力上升速率实验结果

    Table  1.   Experimental results of maximum explosion overpressure and maximum pressure rise rate of epoxypropane with different mass concentrations

    环氧丙烷质量
    浓度/(g·m−3
    最大燃爆超压
    pmax/MPa
    最大压力上升速率
    (dp/dt)max/(MPa·s−1
    116 0.667 28.893
    282 0.726 43.880
    448 0.744 45.808
    614 0.785 50.941
    780 0.799 52.438
    946 0.728 41.523
    1112 0.688 33.178
    下载: 导出CSV

    表  2  金属粉末/环氧丙烷固-液混合燃料的配方

    Table  2.   Formulation of metal powders/epoxypropane solid-liquid mixed fuel

    样品编号 液体燃料 典型金属粉末
    质量浓度/(g·m−3 质量比/% 质量/g
    1 780 10 1.84
    2 20 4.00
    3 30 7.12
    4 40 11.06
    下载: 导出CSV
  • [1] 昝文涛, 洪滔, 董贺飞. 铝粉尘云团爆轰温压效应的数值模拟 [J]. 兵工学报, 2018, 39(1): 101–110. DOI: 10.3969/j.issn.1000-1093.2018.01.011.

    ZAN W T, HONG T, DONG H F. Numerical simulation of detonation temperature and pressure effects of aluminum powder cloud [J]. Acta Armamentarii, 2018, 39(1): 101–110. DOI: 10.3969/j.issn.1000-1093.2018.01.011.
    [2] 刘文杰, 白春华, 刘庆明, 等. 高挥发性液体传质速率机理和实验研究 [J]. 兵工学报, 2020, 41(6): 1123–1130. DOI: 10.3969/j.issn.1000-1093.2020.06.008.

    LIU W J, BAI C H, LIU Q M, et al. Mechanism and experimental study of high volatile liquid mass transfer rate [J]. Acta Armamentarii, 2020, 41(6): 1123–1130. DOI: 10.3969/j.issn.1000-1093.2020.06.008.
    [3] 程扬帆, 王中华, 胡芳芳, 等. TiH2粉尘火焰传播速度及温度分布的高速二维测量 [J]. 兵工学报, 2023, 44(4): 1181–1192. DOI: 10.12382/bgxb.2021.0842.

    CHENG Y F, WANG Z H, HU F F, et al. High-speed two-dimensional measurements of flame propagation velocity and temperature distribution of TiH2 dust flame [J]. Acta Armamentarii, 2023, 44(4): 1181–1192. DOI: 10.12382/bgxb.2021.0842.
    [4] LIU G, HOU F, CAO B, et al. Experimental study of fuel-air explosive [J]. Combustion, Explosion, and Shock Waves, 2008, 44(2): 213–217. DOI: 10.1007/s10573-008-0028-7.
    [5] ZHANG C, BAI C H, REN J F, et al. The promotion of nitromethane on solid-liquid fuel/air mixtures explosion characteristics under different ambient conditions [J]. Fuel, 2022, 322: 124190. DOI: 10.1016/j.fuel.2022.124190.
    [6] WAN H W, WEN Y Q, ZHANG Q. Explosion behaviors of vapor-liquid propylene oxide/air mixture under high-temperature source ignition [J]. Fuel, 2023, 331: 125815. DOI: 10.1016/j.fuel.2022.125815.
    [7] BAI C H, LIU W J, YAO J, et al. Explosion characteristics of liquid fuels at low initial ambient pressures and temperatures [J]. Fuel, 2020, 265: 116951. DOI: 10.1016/j.fuel.2019.116951.
    [8] ZHANG Q, LI W, TAN R M, et al. Combustion parameters of gaseous epoxypropane/air in a confined vessel [J]. Fuel, 2013, 105: 512–517. DOI: 10.1016/j.fuel.2012.10.017.
    [9] 谭汝媚, 张奇. 环氧丙烷蒸气-铝粉-空气杂混合物的爆炸特性研究 [J]. 高压物理学报, 2014, 28(1): 48–54. DOI: 10.11858/gywlxb.2014.01.008.

    TAN R M, ZHANG Q. Research on the explosibility of gaseous epoxypropane-aluminum dust-air hybrid mixtures [J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 48–54. DOI: 10.11858/gywlxb.2014.01.008.
    [10] 徐敏潇, 刘大斌, 徐森. 硼含量对燃料空气炸药爆炸性能影响的试验研究 [J]. 兵工学报, 2017, 38(5): 886–891. DOI: 10.3969/j.issn.1000-1093.2017.05.007.

    XU M X, LIU D B, XU S. Experimental study of influence of boron content on explosion performance of fuel-air explosive [J]. Acta Armamentarii, 2017, 38(5): 886–891. DOI: 10.3969/j.issn.1000-1093.2017.05.007.
    [11] WANG Y X, LIU Y, XU Q M, et al. Effect of metal powders on explosion of fuel-air explosives with delayed secondary igniters [J]. Defence Technology, 2021, 17(3): 785–791. DOI: 10.1016/j.dt.2020.05.010.
    [12] CHENG Y F, YAO Y L, WANG Z H, et al. An improved two-colour pyrometer based method for measuring dynamic temperature mapping of hydrogen-air combustion [J]. International Journal of Hydrogen Energy, 2021, 46(69): 34463–34468. DOI: 10.1016/j.ijhydene.2021.07.224.
    [13] 范彩玲. 温压弹爆炸热毁伤效应研究 [D]. 太原: 中北大学, 2022. DOI: 10.27470/d.cnki.ghbgc.2022.000903.

    FAN C L. Research on thermal damage effect of thermobaric bomb explosive [D]. Taiyuan: North University of China, 2022. DOI: 10.27470/d.cnki.ghbgc.2022.000903.
    [14] LIU X L, WANG Y, ZHANG Q. A study of the explosion parameters of vapor-liquid two-phase JP-10/air mixtures [J]. Fuel, 2016, 165: 279–288. DOI: 10.1016/j.fuel.2015.10.081.
    [15] 张启威, 程扬帆, 夏煜, 等. 比色测温技术在瞬态爆炸温度场测量中的应用研究 [J]. 爆炸与冲击, 2022, 42(11): 114101. DOI: 10.11883/bzycj-2021-0477.

    ZHANG Q W, CHENG Y F, XIA Y, et al. Application of colorimetric pyrometer in the measurement of transient explosion temperature [J]. Explosion and Shock Waves, 2022, 42(11): 114101. DOI: 10.11883/bzycj-2021-0477.
    [16] 戴景民. 辐射测温的发展现状与展望 [J]. 自动化技术与应用, 2004, 23(3): 1–7. DOI: 10.3969/j.issn.1003-7241.2004.03.001.

    DAI J M. Survey of radiation thermometry [J]. Techniques of Automations & Applications, 2004, 23(3): 1–7. DOI: 10.3969/j.issn.1003-7241.2004.03.001.
    [17] WANG H, CHENG Y F, ZHU S J, et al. Effects of content and particle size of TiH2 powders on the energy output rules of RDX composite explosives [J]. Defence Technology, 2023. DOI: 10.1016/j.dt.2023.05.002.
    [18] 夏煜, 程扬帆, 李世周, 等. 无约束条件下甲烷/空气预混气体燃爆特性研究 [J]. 实验力学, 2023, 38(2): 243–253. DOI: 10.7520/1001-4888-22-119.

    XIA Y, CHENG Y F, LI S Z, et al. Combustion and explosion characteristics of methane/air premixed gas under unconstrained condition [J]. Journal of Experimental Mechanics, 2023, 38(2): 243–253. DOI: 10.7520/1001-4888-22-119.
    [19] LI S Z, CHENG Y F, WANG R, et al. Suppression effects and mechanisms of three typical solid suppressants on titanium hydride dust explosions [J]. Process Safety and Environmental Protection, 2023, 177: 688–698. DOI: 10.1016/j.psep.2023.07.039.
    [20] 蒋八运, 程扬帆, 李世周, 等. 环氧丙烷/空气混合物气-液两相燃爆特性 [J]. 含能材料, 2023, 31(7): 699–706. DOI: 10.11943/CJEM2023077.

    JIANG B Y, CHENG Y F, LI S Z, et al. Vapor-liquid two-phase combustion and explosion characteristics of propylene oxide/air mixtures [J]. Chinese Journal of Energetic Materials, 2023, 31(7): 699–706. DOI: 10.11943/CJEM2023077.
    [21] WANG Z H, CHENG Y F, MOGI T, et al. Flame structures and particle-combustion mechanisms in nano and micron titanium dust explosions [J]. Journal of Loss Prevention in the Process Industries, 2022, 80: 104876. DOI: 10.1016/j.jlp.2022.104876.
    [22] ZHANG C, BAI C H, YAO J. Liquid component effect on the dispersion and explosion characteristics of solid-liquid mixed fuel [J]. Fuel, 2022, 319: 123806. DOI: 10.1016/j.fuel.2022.123806.
    [23] DE IZARRA C, GITTON J M. Calibration and temperature profile of a tungsten filament lamp [J]. European Journal of Physics, 2010, 31(4): 933–942. DOI: 10.1088/0143-0807/31/4/022.
    [24] 李文霞, 林柏泉, 魏吴晋, 等. 纳米级别铝粉粉尘爆炸的实验研究 [J]. 中国矿业大学学报, 2010, 39(4): 475–479.

    LI W X, LIN B Q, WEI W J, et al. Experimental study on the explosive characteristics of nano-aluminum powder [J]. Journal of China University of Mining & Technology, 2010, 39(4): 475–479.
    [25] LIU W J, BAI C H, LIU Q M, et al. Effect of metal dust fuel at a low concentration on explosive/air explosion characteristics [J]. Combustion and Flame, 2020, 221: 41–49. DOI: 10.1016/j.combustflame.2020.07.025.
    [26] 林柏泉, 梅晓凝, 王可, 等. 基于20 L球形爆炸装置的微米级铝粉爆炸特性实验 [J]. 北京理工大学学报, 2016, 36(7): 661–667. DOI: 10.15918/j.tbit1001-0645.2016.07.001.

    LIN B Q, MEI X N, WANG K, et al. Explosion characteristics of micro-aluminum powders in 20 L spherical vessels [J]. Transactions of Beijing Institute of Technology, 2016, 36(7): 661–667. DOI: 10.15918/j.tbit1001-0645.2016.07.001.
    [27] 王学锐. 铝热反应热效应机制与工程应用 [D]. 淮南: 安徽理工大学, 2022. DOI: 10.26918/d.cnki.ghngc.2022.000740.

    WANG X R. Thermal effect mechanism and engineering application of aluminum thermal reaction [D]. Huainan: Anhui University of Science and Technology, 2022. DOI: 10.26918/d.cnki.ghngc.2022.000740.
    [28] 郝海霞, 姚二岗, 王宝兴, 等. 含纳米金属粉AP/HTPB复合固体推进剂的激光点火特性 [J]. 含能材料, 2015, 23(9): 908–914. DOI: 10.11943/j.issn.1006-9941.2015.09.014.

    HAO H X, YAO E G, WANG B X, et al. Laser ignition characteristics of AP /HTPB composite solid propellants containing metal nanopowders [J]. Chinese Journal of Energetic Materials, 2015, 23(9): 908–914. DOI: 10.11943/j.issn.1006-9941.2015.09.014.
    [29] 方伟, 赵省向, 张奇, 等. 含微/纳米铝粉燃料空气炸药爆炸特性 [J]. 含能材料, 2021, 29(10): 971–976. DOI: 10.11943/CJEM2021080.

    FANG W, ZHAO S X, ZHANG Q, et al. Explosion characteristic of fuel-air explosion containing micro/nano-aluminum powder [J]. Chinese Journal of Energetic Materials, 2021, 29(10): 971–976. DOI: 10.11943/CJEM2021080.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  143
  • HTML全文浏览量:  26
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-26
  • 修回日期:  2024-02-28
  • 网络出版日期:  2024-03-11

目录

    /

    返回文章
    返回