含初始损伤饱水花岗岩的冲击破坏规律

褚怀保 陈璐阳 杨小林 王东辉 魏海霞 孙博

褚怀保, 陈璐阳, 杨小林, 王东辉, 魏海霞, 孙博. 含初始损伤饱水花岗岩的冲击破坏规律[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0036
引用本文: 褚怀保, 陈璐阳, 杨小林, 王东辉, 魏海霞, 孙博. 含初始损伤饱水花岗岩的冲击破坏规律[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0036
CHU Huaibao, CHEN Luyang, YANG Xiaolin, WANG Donghui, WEI Haixia, SUN Bo. Experimental study on impact failure law of water-saturated granite with initial damage[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0036
Citation: CHU Huaibao, CHEN Luyang, YANG Xiaolin, WANG Donghui, WEI Haixia, SUN Bo. Experimental study on impact failure law of water-saturated granite with initial damage[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0036

含初始损伤饱水花岗岩的冲击破坏规律

doi: 10.11883/bzycj-2024-0036
基金项目: 国家重点研发计划(2023YFC2907202)
详细信息
    作者简介:

    褚怀保(1978- ),男,博士,教授,chuhuaibao@hpu.edu.cn

    通讯作者:

    陈璐阳(1998- ),男,硕士研究生,chenluyang5@qq.com

  • 中图分类号: O383; TU45

Experimental study on impact failure law of water-saturated granite with initial damage

  • 摘要: 为研究饱水和初始损伤对冲击荷载下花岗岩宏观和微观破坏特征的影响,开展了X射线衍射、霍普金森和扫描电镜试验,利用分形维数对花岗岩的破碎块度和断口形貌进行了分析,探讨了图像放大倍数对分形维数的影响,分析了冲击荷载下饱水后花岗岩的微观致裂机制。结果表明:饱水后花岗岩中角闪石、钠长石、微斜长石和石英的占比减少,高岭石占比显著提高;随着初始损伤的增大,花岗岩的动态峰值应力逐渐减小,而破碎程度和块度分形维数逐渐增大,且初始损伤对块度分形维数的影响大于饱水的影响;随着初始损伤的增加,断口出现更多的微裂纹和碎屑,断口图像的分形维数也逐渐增加;放大倍数在400~3200范围内时,断口图像分形维数随着图像放大倍数的增大而增加,超过3200后,分形维数减小。
  • 图  1  岩石试样

    Figure  1.  Rock specimen

    图  2  花岗岩试样各矿物成分含量

    Figure  2.  Mineral composition content of granite sample

    图  3  SHPB装置示意图

    Figure  3.  SHPB installation diagram

    图  4  临界破坏状态下两种形态的动态应力-应变曲线

    Figure  4.  Two kind of dynamic stress-strain curves in critical failure state

    图  5  自然状态下不同初始损伤岩样的动态应力-应变曲线

    Figure  5.  Dynamic stress-strain curves of rock samples with different initial damage under natural conditions

    图  6  饱水状态下不同初始损伤岩样的动态应力-应变曲线

    Figure  6.  Dynamic stress-strain curves of rock samples with different initial damage in saturated state

    图  7  不同状态下的岩样碎块

    Figure  7.  Fragments of rock samples in different states

    图  8  不同状态下岩石碎块累积质量占比(δ)与碎块端面最大直径(rd)的关系

    Figure  8.  The relationship between the cumulative mass ratio (δ) of rock fragmentation and the maximum diameter (rd) of the fragment end face under different states

    图  9  不同状态下花岗岩试样的ln($ M_r/M\mathrm{_t} $)-ln r曲线

    Figure  9.  ln($ M_r/M_{\mathrm{t}} $)-ln r curves of granite samples under different states

    图  10  不同状态下岩样碎块的块度分形维数随损伤程度的变化曲线

    Figure  10.  Variation curves of fractal dimension of fragmentation of rock samples with damage degree under different states

    图  11  自然状态下冲击荷载后破碎花岗岩的典型断口形式

    Figure  11.  Typical fracture patterns of broken granite under natural impact load

    图  12  饱水与损伤耦合作用下花岗岩的典型断口特征

    Figure  12.  Typical fracture characteristics of granite subjected to the action of water-damage coupling

    图  13  花岗岩分形维数与损伤程度之间的关系

    Figure  13.  The relationship between granite fractal dimension and damage degree

    图  14  不同放大倍数下岩样断口形貌

    Figure  14.  Fracture morphology of rock samples at different magnifications

    图  15  分形维数与图像放大倍数之间的关系

    Figure  15.  The relationship between fractal dimension and image magnification factor

    图  16  冲击荷载下岩样内部形成的水楔效应

    Figure  16.  Water wedge effect formed inside the rock sample under impact load

    表  1  岩样的基本物理参数

    Table  1.   Basic physical parameters of rock samples

    编号 损伤程度 含水状态 高度/mm 直径/mm 质量/g 密度/(g·cm−3)
    1-1 无损伤 自然 25.10 49.80 129.23 2.64
    1-2 饱水 25.16 50.20 128.61 2.58
    2-1 低损伤 自然 25.20 49.90 130.10 2.64
    2-2 饱水 25.12 49.98 129.58 2.63
    3-1 中损伤 自然 25.14 50.00 127.33 2.58
    3-2 饱水 25.12 50.10 126.30 2.55
    下载: 导出CSV

    表  2  不同端面直径下碎块的累积质量

    Table  2.   Cumulative mass of fragments under different end diameters

    损伤程度 含水状态 累计质量/g
    rd ≤10 mm rd ≤20 mm rd ≤30 mm rd ≤40 mm rd ≤50 mm
    无损伤 自然 2.18 6.98 44.81 54.37 129.23
    饱水 5.92 11.46 54.46 59.80 128.61
    低损伤 自然 7.05 17.87 51.69 61.16 130.1
    饱水 12.79 43.78 69.50 129.58 129.58
    中损伤 自然 17.83 48.48 68.18 127.33 127.33
    饱水 26.39 63.00 74.75 126.30 126.30
    下载: 导出CSV
  • [1] 李夕兵, 周健, 王少锋, 等. 深部固体资源开采评述与探索 [J]. 中国有色金属学报, 2017, 27(6): 1236–1262. DOI: 10.19476/j.ysxb.1004.0609.2017.06.021.

    LI X B, ZHOU J, WANG S F, et al. Review and practice of deep mining for solid mineral resources [J]. The Chinese Journal of Nonferrous Metals, 2017, 27(6): 1236–1262. DOI: 10.19476/j.ysxb.1004.0609.2017.06.021.
    [2] 薛永明, 单启伟, 戴兵, 等. 不同损伤程度花岗岩在冲击荷载作用下的动态力学特性 [J]. 有色金属工程, 2020, 10(3): 54–61. DOI: 10.3969/j.issn.2095-1744.2020.03.010.

    XUE Y M, SHAN Q W, DAI B, et al. Dynamic mechanical properties of granite with different damage degrees under impact loading [J]. Nonferrous Metals Engineering, 2020, 10(3): 54–61. DOI: 10.3969/j.issn.2095-1744.2020.03.010.
    [3] 李地元, 朱泉企, 李夕兵. 孔洞形状对大理岩渐进破坏力学特性影响研究 [J]. 地下空间与工程学报, 2018, 14(1): 58–66.

    LI D Y, ZHU Q Q, LI X B. Research on the effect of cavity shapes for the progressive failure and mechanical behavior of marble [J]. Chinese Journal of Underground Space and Engineering, 2018, 14(1): 58–66.
    [4] 朱晶晶, 李夕兵, 宫凤强, 等. 单轴循环冲击下岩石的动力学特性及其损伤模型研究 [J]. 岩土工程学报, 2013, 35(3): 531–539.

    ZHU J J, LI X B, GONG F Q, et al. Dynamic characteristics and damage model for rock under uniaxial cyclic impact compressive loads [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 531–539.
    [5] 王志亮, 杨辉, 田诺成. 单轴循环冲击下花岗岩力学特性与损伤演化机理 [J]. 哈尔滨工业大学学报, 2020, 52(2): 59–66. DOI: 10.11918/201811085.

    WANG Z L, YANG H, TIAN N C. Mechanical property and damage evolution mechanism of granite under uniaxial cyclic impact [J]. Journal of Harbin Institute of Technology, 2020, 52(2): 59–66. DOI: 10.11918/201811085.
    [6] 柴耀光, 刘连生, 曾鹏, 等. 高应变率下含水红砂岩爆破损伤演化模型研究 [J]. 工程爆破, 2022, 28(5): 23–32. DOI: 10.19931/j.EB.20210192.

    CHAI Y G, LIU L S, ZENG P, et al. Research on blasting damage evolution model of water bearing red sandstone under high strain rate [J]. Engineering Blasting, 2022, 28(5): 23–32. DOI: 10.19931/j.EB.20210192.
    [7] 王浩宇, 许金余, 刘石. 水-动力耦合作用下红砂岩动态强度及破坏机理 [J]. 空军工程大学学报(自然科学版), 2021, 22(4): 99–103. DOI: 10.3969/j.issn.1009-3516.2021.04.015.

    WANG H Y, XU J Y, LIU S. Study of dynamic strength and failure mechanism of red sandstone under condition of hydrodynamic coupling effect [J]. Journal of Air Force Engineering University (Natural Science Edition), 2021, 22(4): 99–103. DOI: 10.3969/j.issn.1009-3516.2021.04.015.
    [8] 闻磊, 冯文杰, 李明烨, 等. 应变率对含裂隙红砂岩裂纹扩展模式及破碎特征的影响 [J]. 爆炸与冲击, 2023, 43(11): 113103. DOI: 10.11883/bzycj-2023-0061.

    WEN L, FENG W J, LI M Y, et al. Strain rate effect on crack propagation and fragmentation characteristics of red sandstone containing pre-cracks [J]. Explosion and Shock Waves, 2023, 43(11): 113103. DOI: 10.11883/bzycj-2023-0061.
    [9] 周磊, 姜亚成, 朱哲明, 等. 动载荷作用下裂隙岩体的止裂机理分析 [J]. 爆炸与冲击, 2021, 41(5): 053102. DOI: 10.11883/bzycj-2020-0125.

    ZHOU L, JIANG Y C, ZHU Z M, et al. Mechanism study of preventing crack propagation of fractured rock under dynamic loads [J]. Explosion and Shock Waves, 2021, 41(5): 053102. DOI: 10.11883/bzycj-2020-0125.
    [10] 王璐, 王志亮, 石高扬, 等. 热处理花岗岩循环冲击下断口形貌研究 [J]. 水利水运工程学报, 2018(5): 69–75. DOI: 10.16198/j.cnki.1009-640x.2018.05.010.

    WANG L, WANG Z L, SHI G Y, et al. Fractography study of heat-treated granite under action of cyclic impact loading [J]. Hydro-Science and Engineering, 2018(5): 69–75. DOI: 10.16198/j.cnki.1009-640x.2018.05.010.
    [11] 武仁杰, 李海波. SHPB冲击作用下层状千枚岩多尺度破坏机理研究 [J]. 爆炸与冲击, 2019, 39(8): 083106. DOI: 10.11883/bzycj-2019-0187.

    WU R J, LI H B. Multi-scale failure mechanism analysis of layered phyllite subject to impact loading [J]. Explosion and Shock Waves, 2019, 39(8): 083106. DOI: 10.11883/bzycj-2019-0187.
    [12] 陶明, 汪军, 李占文, 等. 冲击荷载下花岗岩层裂断口细–微观试验研究 [J]. 岩石力学与工程学报, 2019, 38(11): 2172–2181. DOI: 10.13722/j.cnki.jrme.2019.0185.

    TAO M, WANG J, LI Z W, et al. Meso-and micro-experimental research on the fracture of granite spallation under impact loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(11): 2172–2181. DOI: 10.13722/j.cnki.jrme.2019.0185.
    [13] LI X B, LOK T S, ZHAO J. Dynamic characteristics of granite subjected to intermediate loading rate [J]. Rock Mechanics and Rock Engineering, 2005, 38(1): 21–39. DOI: 10.1007/s00603-004-0030-7.
    [14] 左婧, 徐卫亚, 王环玲, 等. 岩石电镜扫描图像的分形特征研究 [J]. 三峡大学学报(自然科学版), 2014, 36(2): 72–76. DOI: 10.13393/j.cnki.issn.1672-948x.2014.02.016.

    ZUO J, XU W Y, WANG H L, et al. Fractal analysis of SEM image for rocks [J]. Journal of China Three Gorges University (Natural Sciences), 2014, 36(2): 72–76. DOI: 10.13393/j.cnki.issn.1672-948x.2014.02.016.
    [15] 谭赢, 刘希灵, 赵宇喆. 基于巴西劈裂试验的岩石声发射特性及断口特征分析 [J]. 实验力学, 2021, 36(2): 241–249. DOI: 10.7520/1001-4888-20-032.

    TAN Y, LIU X L, ZHAO Y Z. Acoustic emission parameter characteristics and fracture morphology analysis of rocks based on Brazilian splitting test [J]. Journal of Experimental Mechanics, 2021, 36(2): 241–249. DOI: 10.7520/1001-4888-20-032.
    [16] 中华人民共和国住房和城乡建设部. 工程岩体试验方法标准: GB/T 50266-2013[S]. 北京: 中国计划出版社, 2013.
    [17] 张文达. 花岗岩高温酸性环境水-岩作用特征及岩体劣化机制 [D]. 成都: 西南交通大学, 2021: 18–31. DOI: 10.27414/d.cnki.gxnju.2021.001367.

    ZHANG W D. Water-rock interaction characteristics and rock mass degradation mechanism of granite in high temperature and acid environment [D]. Chengdu: Southwest Jiaotong University, 2021: 18–31. DOI: 10.27414/d.cnki.gxnju.2021.001367.
    [18] 吴秋红, 夏宇浩, 赵延林, 等. 基于DIC及CPG技术的热冷循环后花岗岩I型断裂特性研究 [J/OL]. 煤炭学报[2024-02-28]. https://doi.org/10.13225/j.cnki.jccs.2023.0974.

    WU Q H, XIA Y H, ZHAO Y L, et al. An integrated DIC and CPG investigation of the model-Ⅰ fracture features for granites after cyclic heating-cooling treatments [J/OL]. Journal of China Coal Society[2024-02-28]. https://doi.org/10.13225/j.cnki.jccs.2023.0974.
    [19] 李夕兵, 宫凤强, 高科, 等. 一维动静组合加载下岩石冲击破坏试验研究 [J]. 岩石力学与工程学报, 2010, 29(2): 251–260.

    LI X B, GONG F Q, GAO K, et al. Test study of impact failure of rock subjected to one-dimensional coupled static and dynamic loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 251–260.
    [20] 金解放, 李夕兵, 常军然, 等. 循环冲击作用下岩石应力应变曲线及应力波特性 [J]. 爆炸与冲击, 2013, 33(6): 613–619. DOI: 10.11883/1001-1455(2013)06-0613-07.

    JIN J F, LI X B, CHANG J R, et al. Stress-strain curve and stress wave characteristics of rock subjected to cyclic impact loadings [J]. Explosion and Shock Waves, 2013, 33(6): 613–619. DOI: 10.11883/1001-1455(2013)06-0613-07.
    [21] 纪杰杰, 李洪涛, 吴发名, 等. 冲击荷载作用下岩石破碎分形特征 [J]. 振动与冲击, 2020, 39(13): 176–183, 214. DOI: 10.13465/j.cnki.jvs.2020.13.026.

    JI J J, LI H T, WU F M, et al. Fractal characteristics of rock fragmentation under impact load [J]. Journal of Vibration and Shock, 2020, 39(13): 176–183, 214. DOI: 10.13465/j.cnki.jvs.2020.13.026.
    [22] 李乐, 王成, 张红成, 等. 冲击载荷下砂岩的动态力学特性及破坏机制 [J]. 煤炭工程, 2023, 55(9): 140–145. DOI: 10.11799/ce202309024.

    LI L, WANG C, ZHANG H C, et al. Dynamic mechanical properties and failure mechanism of sandstone under impact loads [J]. Coal Engineering, 2023, 55(9): 140–145. DOI: 10.11799/ce202309024.
    [23] 杨军, 金乾坤, 黄风雷. 岩石爆破理论模型及数值计算 [M]. 北京: 科学出版社, 1999.

    YANG J, JIN Q K, HUANG F L. Theoretical model and numerical calculation of rock blasting [M]. Beijing: Science Press, 1999.
    [24] 王春, 熊宏威, 舒荣华, 等. 高温处理后含铜矽卡岩的动态力学特性及损伤破碎特征 [J]. 中国有色金属学报, 2022, 32(9): 2801–2818. DOI: 10.11817/j.ysxb.1004.0609.2022-36737.

    WANG C, XIONG H W, SHU R H, et al. Dynamic mechanical characteristic and damage-fracture behavior of deep copper-bearing skarn after high temperature treatment [J]. The Chinese Journal of Nonferrous Metals, 2022, 32(9): 2801–2818. DOI: 10.11817/j.ysxb.1004.0609.2022-36737.
    [25] FALCONER K. 分形几何: 数学基础及其应用 [M]. 曾文曲, 译. 北京: 人民邮电出版社, 2007.

    FALCONER K. Mathematical foundations and applications [M]. Translated by ZENG W Q. Beijing: Posts & Telecom Press, 2007.
    [26] 夏开文, 王峥, 吴帮标, 等. 流固耦合作用下深部岩石动态力学响应研究进展 [J]. 煤炭学报, 2024, 49(1): 454–478. DOI: 10.13225/j.cnki.jccs.2023.1381.

    XIA K W, WANG Z, WU B B, et al. Research progress on dynamic response of deep rocks under coupled hydraulic-mechanical loading [J]. Journal of China Coal Society, 2024, 49(1): 454–478. DOI: 10.13225/j.cnki.jccs.2023.1381.
    [27] HADIZADEH J, LAW R D. Water-weakening of sandstone and quartzite deformed at various stress and strain rates [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1991, 28(5): 431–439. DOI: 10.1016/0148-9062(91)90081-V.
    [28] ZHOU Z L, CAI X, MA D, et al. Water saturation effects on dynamic fracture behavior of sandstone [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 114: 46–61. DOI: 10.1016/j.ijrmms.2018.12.014.
    [29] 周子龙, 蔡鑫, 周静, 等. 不同加载率下水饱和砂岩的力学特性研究 [J]. 岩石力学与工程学报, 2018, 37(S2): 4069–4075. DOI: 10.13722/j.cnki.jrme.2018.0571.

    ZHOU Z L, CAI X, ZHOU J, et al. Mechanical properties of saturated sandstone under different loading rates [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S2): 4069–4075. DOI: 10.13722/j.cnki.jrme.2018.0571.
    [30] MAN K, LIU X L, SONG Z F, et al. Dynamic compression characteristics and failure mechanism of water-saturated granite [J]. Water, 2022, 14(2): 216. DOI: 10.3390/w14020216.
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  115
  • HTML全文浏览量:  14
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-22
  • 修回日期:  2024-03-25
  • 网络出版日期:  2024-03-26

目录

    /

    返回文章
    返回