脆性梁弯曲断裂所激发的弯曲波

王志强 杨洪升 周风华

王志强, 杨洪升, 周风华. 脆性梁弯曲断裂所激发的弯曲波[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0046
引用本文: 王志强, 杨洪升, 周风华. 脆性梁弯曲断裂所激发的弯曲波[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0046
WANG Zhiqiang, YANG Hongsheng, ZHOU Fenghua. Bending waves excited by bending fractures of brittle beams[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0046
Citation: WANG Zhiqiang, YANG Hongsheng, ZHOU Fenghua. Bending waves excited by bending fractures of brittle beams[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0046

脆性梁弯曲断裂所激发的弯曲波

doi: 10.11883/bzycj-2024-0046
基金项目: 国家自然科学青年基金(12302474)
详细信息
    作者简介:

    王志强(1996- ),男,博士研究生,2201090018@nbu.edu.cn

    通讯作者:

    杨洪升(1989- ),男,博士,助理研究员,yanghongsheng@nbu.edu.cn

  • 中图分类号: O347

Bending waves excited by bending fractures of brittle beams

  • 摘要: 脆性细长结构在弯曲载荷作用下突然断裂,可能导致断裂点附近出现二次断裂。传统的Euler-Bernoulli梁理论难以描述突加载荷或突卸载荷所导致的波动现象,而Timoshenko梁中的弯曲波速度为有限值,具有一个内禀特征时间,因此基于Timoshenko梁理论来分析弹性梁的弯曲断裂问题。使用Timoshenko梁理论,结合一个包含断裂能的脆性内聚力弯曲断裂模型,建立一维弯曲波传播问题的初边值问题,采用特征线方法求解3种边界条件下半无限长梁中卸载弯曲波的传播问题;进一步分析了断裂能对断裂时间以及峰值弯矩的影响,然后通过数值计算给出这3种情况下梁的动力学响应过程。研究表明:处于纯弯曲状态的梁一旦发生瞬时断裂,二次断裂发生点距离初次断裂点的最短距离为5倍的梁截面回转半径,因为该距离以内的弯矩不会出现过冲;当无量纲断裂能为1.4×10−4,即开裂角度θc=0.004 rad时,在距离初始断裂点17.7个特征长度的位置会产生幅值达到1.67倍初始弯矩的峰值弯矩,是最有可能发生二次断裂的位置;较大的断裂能将延长断裂时间,导致弯矩峰值点位置偏远、相应的峰值载荷也降低。
  • 图  1  Timoshenko梁理论模型

    Figure  1.  Model of Timoshenko beam theory

    图  2  差分网格示意图

    Figure  2.  Differential grid

    图  3  边界网格示意图

    Figure  3.  Boundary differential grid

    图  4  初始静止、不受力梁左端受突加载荷作用问题

    Figure  4.  Left end of unstressed beam subjected to a sudden applied load with initial state of static

    图  5  $ x=0,x=5 $位置的剪力时程对比图

    Figure  5.  Variation with time of the shear force at $ x=0,x=5 $ compared with analytical solution in reference [11]

    图  6  $ t=5,t=10 $时刻的剪力波形对比图

    Figure  6.  Variation with position of the shear force at $ t=5,t=10 $ compared with analytical solution in reference [11]

    图  7  $ t=5 $时刻的速度和弯矩波形对比图

    Figure  7.  Variation with position of the velocity and the bending moment at $ t=5 $ compared with analytical solution in reference [11]

    图  8  不受力梁边界受突加弯矩作用时的弯曲波传播对比图

    Figure  8.  Bending wave propagations in a Timoshenko beam subjected to a suddenly applied boundary moment compared with analytical solution

    图  9  静止梁边界受突加弯矩作用时的剪力传播对比图

    Figure  9.  Shear wave propagations in a Timoshenko beam subjected to a suddenly applied boundary moment compared with analytical solution

    图  10  初始静止处于纯弯曲状态的梁突然断裂时与卸载波相关的弯矩分布.

    Figure  10.  Bending moment profiles in a Timoshenko beam suddenly broken under pure bending.

    图  11  耦合裂纹开裂角度与所受弯矩的内聚力断裂模型

    Figure  11.  Cohesive fracture model coupling bending moment and cracking opening angle

    图  12  不同断裂能下的线性弯曲断裂模型

    Figure  12.  Model of linear flexural fracture at different fracture energies

    图  13  断裂点(即边界点)的弯矩$ M\left(t\right) $时程曲线

    Figure  13.  History curves of bending moment $ M\left(t\right) $ at the break point (boundary)

    图  14  不同断裂能下各个时刻的弯矩波形图

    Figure  14.  Bending wave propagations at different fracture energies

    图  15  不同断裂能下断裂导致邻近区域弯矩“过冲”峰值的空间分布包络线

    Figure  15.  Envelope of the overshot bending moment in a brittle beam when it breaks with different cohesive fracture energy

    表  1  不同断裂能(开裂角度)下峰值弯矩极值的时空坐标

    Table  1.   Positions and time of peak bending moment extremes at different fracture energies (cracking angles)

    开裂角度
    θc
    归一化峰值弯矩极值
    Mp = (Mmax/m0)peak
    峰值弯矩
    位置Xc
    峰值弯矩
    时间tc
    0.004 1.668 17.67 32.95
    0.008 1.657 17.68 34.33
    0.012 1.639 17.72 35.90
    下载: 导出CSV

    表  2  意大利面断裂峰值弯矩极值的时空坐标

    Table  2.   Positions and time of peak bending moment extremes of spaghetti

    开裂角度θc/(°) 断裂能Gc/10−5 J 峰值弯矩位置Xc/mm 峰值弯矩时间tc/μs
    0.23 1.28 5.10 5.97
    0.46 2.56 5.10 6.23
    0.69 3.84 5.12 6.51
    下载: 导出CSV
  • [1] FEYNMAN R P, SYKES C. No ordinary genius: the illustrated Richard Feynman[M]. New York: Norton, 1994: 180-181.
    [2] SCHINDLER H J, KOLSKY H. Multiple fractures produced by the bending of brittle beams [J]. Journal of the Mechanics and Physics of Solids, 1983, 31(5): 427–436. DOI: 10.1016/0022-5096(83)90008-X.
    [3] AUDOLY B, NEUKIRCH S. Fragmentation of rods by cascading cracks: why spaghetti does not break in half [J]. Physical Review Letters, 2005, 95(9): 095505. DOI: 10.1103/PhysRevLett.95.095505.
    [4] TIMOSHENKO S P. LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1921, 41(245): 744–746. DOI: 10.1080/14786442108636264.
    [5] 龙龙, 郑宇轩, 周风华, 等. 铁木辛柯梁中的卸载弯曲波及二次断裂 [J]. 力学学报, 2021, 53(6): 1658–1670. DOI: 10.6052/0459-1879-21-106.

    LONG L, ZHENG Y X, ZHOU F H, et al. Unloading flexural stress wave in a timoshenko beam and the secondary fracture of the beam [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1658–1670. DOI: 10.6052/0459-1879-21-106.
    [6] 李永池. 波动力学 第2版[M]. 合肥: 中国科学技术大学出版社, 2018: 9–10.
    [7] 李凤云. 脆性梁的弯曲波传播问题研究[D]. 浙江宁波: 宁波大学, 2018: 8–28.
    [8] LEONARD R W, BUDIANSKY B. On traveling waves in beams: NACA-TR-1173 [R]. USA: NASA, 1954.
    [9] AL-MOUSAWI M M. Transient response of Timoshenko beams with discontinuities of cross-section [J]. International Journal of Mechanical Sciences, 1984, 26(4): 277–292. DOI: 10.1016/0020-7403(84)90048-1.
    [10] AL-MOUSAWI M M. On experimental studies of longitudinal and flexural wave propagations: An Annotated Bibliography [J]. Applied Mechanics Reviews, 1986, 39(6): 853–865. DOI: 10.1115/1.3149516.
    [11] BOLEY B A, CHAO C C. Some solutions of the Timoshenko beam equations [J]. Journal of Applied Mechanics, 1955, 22(4): 579–586. DOI: 10.1115/1.4011158.
    [12] MORTON K W, MAYERS D F. Numerical solution of partial differential equations[M]. New York: Cambridge University Press, 2005: 89–93.
    [13] KIPP M E, GRADY D E. Dynamic fracture growth and interaction in one dimension [J]. Journal of the Mechanics and Physics of Solids, 1985, 33(4): 399–415. DOI: 10.1016/0022-5096(85)90036-5.
    [14] HEISSER R H, PATIL V P, Stoop N, et al. Controlling fracture cascades through twisting and quenching [J]. Proceedings of the National Academy of Sciences, 2018, 115(35): 8665–8670. DOI: 10.1073/pnas.1802831115.
    [15] 龙龙. 弯曲断裂和弯曲应力波的相关问题研究[D]. 浙江宁波: 宁波大学, 2021: 75–108.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  4
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-30
  • 修回日期:  2024-08-22
  • 网络出版日期:  2024-08-26

目录

    /

    返回文章
    返回