水下爆炸载荷下柔性支撑板架结构防护效能快速预报与优化方法

郭桐桐 郭煜 余俊 陈娟 王海坤 张伦平

郭桐桐, 郭煜, 余俊, 陈娟, 王海坤, 张伦平. 水下爆炸载荷下柔性支撑板架结构防护效能快速预报与优化方法[J]. 爆炸与冲击, 2024, 44(10): 105101. doi: 10.11883/bzycj-2024-0068
引用本文: 郭桐桐, 郭煜, 余俊, 陈娟, 王海坤, 张伦平. 水下爆炸载荷下柔性支撑板架结构防护效能快速预报与优化方法[J]. 爆炸与冲击, 2024, 44(10): 105101. doi: 10.11883/bzycj-2024-0068
GUO Tongtong, GUO Yu, YU Jun, CHEN Juan, WANG Haikun, ZHANG Lunping. Rapid prediction and optimization method for protective effectiveness of flexibly supported plate structure under underwater explosive[J]. Explosion And Shock Waves, 2024, 44(10): 105101. doi: 10.11883/bzycj-2024-0068
Citation: GUO Tongtong, GUO Yu, YU Jun, CHEN Juan, WANG Haikun, ZHANG Lunping. Rapid prediction and optimization method for protective effectiveness of flexibly supported plate structure under underwater explosive[J]. Explosion And Shock Waves, 2024, 44(10): 105101. doi: 10.11883/bzycj-2024-0068

水下爆炸载荷下柔性支撑板架结构防护效能快速预报与优化方法

doi: 10.11883/bzycj-2024-0068
详细信息
    作者简介:

    郭桐桐(1995- ),男,硕士,工程师,guotongtong2013z@163.com

    通讯作者:

    张伦平(1983- ),男,硕士,研究员,applezergyx@126.com

  • 中图分类号: O383.1

Rapid prediction and optimization method for protective effectiveness of flexibly supported plate structure under underwater explosive

  • 摘要: 为实现柔性支撑板架结构在水下爆炸下防护效能的快速评估和设计优化,基于高置信度仿真,建立了水下爆炸作用下柔性支撑板架防护效能的评估方法并开展试验验证。采用验证后的高置信度仿真方法生成样本工况数据,并通过径向基神经网络模型构建能快速评估柔性支撑板架结构防护效能的代理模型。结合多岛遗传算法对建立的代理模型进行防护结构高防护效能和轻量化的多目标优化并获取最优结构参数。建立的快速预报与优化方法可以为相关的结构设计优化提供重要的技术支撑。
  • 图  1  柔性支撑板架结构的简化模型

    Figure  1.  Simplified model of flexibly supported plate structure

    图  2  迎爆面面板后弧形支撑板与T形筋分布

    Figure  2.  Distribution of the flexible support plate and T-shaped reinforcement behind the explosion facing panel

    图  3  网格划分

    Figure  3.  Grid partitioning

    图  4  边界设置

    Figure  4.  Boundary settings

    图  5  破坏判定与临界速度

    Figure  5.  Destruction determination and critical speed

    图  6  柔性支撑板架结构试验模型

    Figure  6.  Test model for flexibly supported plate structure

    图  7  柔性支撑板架结构试验模型的仿真计算

    Figure  7.  Simulation calculation of test model for flexibly supported plate structure

    图  8  试验模型的水下爆炸变形

    Figure  8.  Underwater explosion deformation of experimental model

    图  9  仿真得到的迎爆面面板变形

    Figure  9.  Deformation of the explosion facing panel in simulation

    表  1  钢材的J-C本构参数和失效参数设置[10]

    Table  1.   J-C constitutive and failure parameter settings for steel material[10]

    A/MPa B/MPa n m C 破坏位移/μm
    706 648 0.58 0 0.01 1
    D1 D2 D3 D4 D5 ${\dot \varepsilon _{ {0}}} $/s−1
    0.272 −0.073 −0.65 −0.003 0 1
    下载: 导出CSV

    表  2  柔性支撑板架结构各主要部分的极限吸能

    Table  2.   The ultimate energy absorption of the main parts of the flexibly supported plate structure on the ship’s side

    柔性支撑板架结构主要部分 极限吸能/MJ 吸能占总能量比例/%
    柔性支撑板架结构 112.21 100
    迎爆面面板 52.85 47.1
    水平弧形板 22.17 19.8
    水平弧形板肘板 1.05 0.9
    迎爆面T形筋腹板 10.40 9.3
    迎爆面T形筋面板 2.75 2.5
    背爆面面板 2.84 2.5
    下载: 导出CSV

    表  3  Q355B钢的J-C本构参数与失效参数设置[12]

    Table  3.   J-C constitutive and failure parameter settings for Q355B steel[12]

    A/MPa B/MPa n m C 破坏位移/μm
    360 300 0.547 0 0.046 1
    D1 D2 D3 D4 D5 $ {\dot \varepsilon _{ {0}}} $/s−1
    −0.091 1.532 −0.091 0 0 1
    下载: 导出CSV

    表  4  试验结果与高精度仿真结果比较

    Table  4.   Comparison between experimental results and high-precision simulation results

    最大挠度 横向变形长度 垂向变形长度
    仿真/m 实验/m 误差/% 仿真/m 实验/m 误差/% 仿真/m 实验/m 误差/%
    0.241 0.233 3.4 1.358 1.342 1.2 2.565 2.546 0.7
    下载: 导出CSV

    表  5  网格尺寸对于计算结果的影响

    Table  5.   The influence of grid size on calculation results

    网格尺寸/mm 网格数量 结构总吸能/kJ 最大挠度
    仿真/m 实验/m 误差/%
    20 80094 1130 0.241 0.233 3.4
    30 54459 1179 0.245 0.233 5.2
    40 37334 1206 0.246 0.233 5.5
    下载: 导出CSV

    表  6  样本点及计算结果

    Table  6.   Sample points and calculation results

    抽样工况 tb/mm th/mm tfb/mm Et/MJ mt/t
    1-1 26.57 9.71 4.00 199.2 79.6
    1-2 23.71 6.29 12.00 151.2 72.7
    1-3 24.86 5.71 4.57 189.9 72.3
    1-4 22.57 8.57 5.14 162.2 69.5
    1-5 27.71 4.57 6.86 207.5 78.9
    1-6 26.00 8.00 8.57 180.3 78.4
    1-7 24.29 12.00 6.29 164.1 77.0
    1-8 23.14 5.14 8.00 163.4 68.9
    1-9 29.43 6.86 9.71 208.1 85.9
    1-10 30.00 7.43 5.71 226.8 86.3
    1-11 28.29 10.86 7.43 198.5 85.8
    1-12 27.14 4.00 10.86 189.1 78.4
    1-13 28.86 10.29 11.43 189.5 88.1
    1-14 25.43 11.43 10.29 160.2 80.6
    1-15 22.00 9.14 9.14 140.0 70.1
    下载: 导出CSV

    表  7  RBF代理模型在检验工况上的精度检测

    Table  7.   Accuracy detection of RBF proxy model in testing conditions

    检验工况 tb/mm th/mm tfb/mm Et,d/MJ Et,f/MJ re/%
    2-1 22 6 4 167.0 157.1 6.3
    2-2 24 8 6 172.6 174.6 −1.2
    2-3 26 12 12 157.6 163.2 −3.4
    2-4 28 8 4 184.7 178.4 −3.5
    2-5 30 4 8 224.3 213.7 −4.9
    下载: 导出CSV

    表  8  优化得到的Pareto前沿解集

    Table  8.   Optimized Pareto frontier solution set

    Pareto解集工况 tb/mm th/mm tfb/mm Et,d/MJ mt/t γ/(MJ·t−1)
    3-1 27.76 4.01 5.32 214.7 78.00 2.75
    3-2 24.66 4.33 4.51 191.0 70.63 2.70
    3-3 28.45 5.31 4.04 220.9 79.58 2.78
    3-4 26.62 5.57 4.06 207.2 76.19 2.72
    3-5 25.50 5.96 4.99 193.3 74.19 2.61
    下载: 导出CSV
  • [1] 朱锡, 张振华, 刘润泉, 等. 水面舰艇舷侧防雷舱结构模型抗爆试验研究 [J]. 爆炸与冲击, 2004, 24(2): 133–139. DOI: 10.11883/1001-1455(2004)02-0133-7.

    ZHU X, ZHANG Z H, LIU R Q, et al. Experimental study on the explosion resistance of cabin near shipboard of surface warship subjected to underwater contact explosion [J]. Explosion and Shock Waves, 2004, 24(2): 133–139. DOI: 10.11883/1001-1455(2004)02-0133-7.
    [2] 侯海量, 张成亮, 朱锡. 水下舷侧防雷舱结构防护效能评估方法研究 [J]. 中国舰船研究, 2013, 8(3): 22–26. DOI: 10.3969/j.issn.1673-3185.2013.03.005.

    HOU H L, ZHANG C L, ZHU X. Evaluation methods of the performance of multi-layered blast protection blisters subjected to underwater contact explosions [J]. Chinese Journal of Ship Research, 2013, 8(3): 22–26. DOI: 10.3969/j.issn.1673-3185.2013.03.005.
    [3] 吴林杰, 朱锡, 侯海量, 等. 舰船水下防护结构舷侧空舱内部结构优化 [J]. 海军工程大学学报, 2017, 29(2): 17–21. DOI: 10.7495/j.issn.1009-3486.2017.02.004.

    WU L J, ZHU X, HOU H L, et al. Optimization research on broadside cabin inside structure of warship underwater defensive structure [J]. Journal of Naval University of Engineering, 2017, 29(2): 17–21. DOI: 10.7495/j.issn.1009-3486.2017.02.004.
    [4] 张弩, 明付仁, 吴国民, 等. 舰船舷侧防御纵壁弧形支撑结构水下接触爆炸的防护效果研究 [J]. 船舶力学, 2019, 23(10): 1257–1265. DOI: 10.3969/j.issn.1007-7294.2019.10.012.

    ZHANG N, MING F R, WU G M, et al. Study on the protection effects of arc-shaped structures on warship broadside subjected to underwater contact explosions [J]. Journal of Ship Mechanics, 2019, 23(10): 1257–1265. DOI: 10.3969/j.issn.1007-7294.2019.10.012.
    [5] 柴崧淋, 侯海量, 金键, 等. 水下接触爆炸下舷侧防雷舱吸能结构形式试验研究 [J]. 兵工学报, 2022, 43(6): 1395–1406. DOI: 10.12382/bgxb.2021.0328.

    CHAI S L, HOU H L, JIN J, et al. Experimental study on the energy-absorbing structure of broadside defense cabin subjected to underwater contact explosion [J]. Acta Armamentarii, 2022, 43(6): 1395–1406. DOI: 10.12382/bgxb.2021.0328.
    [6] 姚凤翔, 王鸿东, 张海华, 等. 数据驱动的可调螺距桨船舶油耗模型及航速优化 [J]. 中国造船, 2023, 64(2): 226–239. DOI: 10.3969/j.issn.1000-4882.2023.02.020.

    YAO F X, WANG H D, ZHANG H H, et al. Data-driven fuel consumption model and speed optimization of ships with controllable pitch propeller [J]. Shipbuilding of China, 2023, 64(2): 226–239. DOI: 10.3969/j.issn.1000-4882.2023.02.020.
    [7] 张晓东, 权晓波, 王占莹. 代理模型在水下航行体空泡压力预示的应用研究 [J]. 船舶力学, 2018, 22(1): 12–21. DOI: 10.3969/j.issn.1007-7294.2018.01.002.

    ZHANG X D, QUAN X B, WANG Z Y. Research on the prediction method of unsteady cavity pressure development of underwater vehicle based on surrogate model [J]. Journal of Ship Mechanics, 2018, 22(1): 12–21. DOI: 10.3969/j.issn.1007-7294.2018.01.002.
    [8] 强以铭, 陈诗楠, 陈奕宏, 等. 基于机器学习的船舶螺旋桨敞水性能预报代理模型 [J]. 中国造船, 2022, 63(5): 181–188. DOI: 10.3969/j.issn.1000-4882.2022.05.017.

    QIANG Y M, CHEN S N, CHEN Y H, et al. Prediction of open-water characteristics of ship propellers based on machine learning surrogate model [J]. Shipbuilding of China, 2022, 63(5): 181–188. DOI: 10.3969/j.issn.1000-4882.2022.05.017.
    [9] 王卓, 孔祥韶, 吴卫国. 基于遗传算法的邮轮舷侧开口结构补强技术研究 [J]. 中国造船, 2023, 64(6): 86–100. DOI: 10.3969/j.issn.1000-4882.2023.06.008.

    WANG Z, KONG X S, WU W G. Research on reinforcement technique for side shell with openings on curise ships based on genetic algorithm [J]. Shipbuilding of China, 2023, 64(6): 86–100. DOI: 10.3969/j.issn.1000-4882.2023.06.008.
    [10] 孟利平. 应变率和应力三轴度对船用钢变形和断裂的影响研究 [D]. 无锡: 中国船舶科学研究中心, 2016: 83–89.

    MENG L P. Influence of strain rate and stress triaxiality on the deformation and fracture behavior of ship hull steel [D]. Wuxi: China Ship Scientific Research Center, 2016: 83–89.
    [11] 郭桐桐, 张伦平, 伍星星, 等. 平板和板架结构在水下非接触爆炸下冲击波载荷与速度场等效关系研究 [J]. 振动与冲击, 2024, 43(16): 146–151.

    GUO T T, ZHANG L P, WU X X, et, al. Study on the equivalent relationship between shock wave load and velocity field load of plate and plate frame structure under underwater non-contact explosion [J]. Journal of Vibration and Shock, 2024, 43(16): 146–151.
    [12] 伍星星, 刘建湖, 陈嘉伟, 等. 冲击载荷作用下Q345钢失效应变与单元尺寸关系研究 [J]. 船舶力学, 2023, 27(2): 260–271. DOI: 10.3969/j.issn.1007-7294.2023.02.010.

    WU X X, LIU J H, CHEN J W, et al. Influence of element size on failure strain of Q345B steel under intensive loading [J]. Journal of Ship Mechanics, 2023, 27(2): 260–271. DOI: 10.3969/j.issn.1007-7294.2023.02.010.
  • 加载中
图(9) / 表(8)
计量
  • 文章访问数:  138
  • HTML全文浏览量:  63
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-11
  • 修回日期:  2024-08-21
  • 网络出版日期:  2024-09-02
  • 刊出日期:  2024-10-30

目录

    /

    返回文章
    返回