Numerical simulation of dynamic response of reinforced masonry wall strengthened with polyurea under gas explosion
-
摘要: 为研究燃气爆炸作用下配筋砌体墙的抗爆能力及聚脲对墙体的加固性能,采用LS-DYNA软件,对无配筋砌体墙、配筋砌体墙、聚脲加固无筋砌体墙、聚脲加固配筋砌体墙的抗燃气爆炸性能进行数值模拟,得到了不同墙体在峰值为5、10、20、30 kPa的燃气爆炸荷载作用下的动态响应,并对灰缝竖向配筋增强效果和聚脲加固效果进行了对比分析。结果表明:(1)无筋墙体抗燃气爆炸能力较弱,一般在20 kPa荷载作用下发生不可修复破坏,在30 kPa荷载作用下发生倒塌破坏;(2)在砌体墙灰缝中,竖向配置钢筋和在墙体表面喷涂聚脲均可增强砌体墙的抗爆能力。在20 kPa荷载作用下,各加固墙体跨中峰值位移均较无筋墙体的减小,破坏均较轻,均可修复,其中双面喷涂聚脲加固无筋墙体的抗爆效果最好,其在30 kPa荷载作用下也未发生倒塌破坏,配筋加强和背爆面喷涂聚脲加固的次之;(3)三组聚脲加固配筋墙体均可承受30 kPa燃气爆炸荷载的作用,迎爆面喷涂加固的墙体中间发生开裂,有碎块飞溅,跨中峰值位移最大,背爆面以及双面喷涂加固的墙体两端出现局部破坏,两者墙体基本完整,且双面喷涂的墙体跨中峰值位移最小,说明在灰缝竖向配筋的基础上再双面喷涂聚脲,抗爆加固效果最优,还可以承受更大的燃气爆炸荷载。Abstract: In order to study the anti-explosion ability of reinforced masonry wall and the reinforcement performance of polyurea on the wall, LS-DYNA software was used to numerically simulate the dynamic response of unreinforced masonry wall, reinforced masonry wall, and masonry wall strengthened with polyurea respectively. The anti-gas explosion performance of different walls under gas explosion load with peak value of 5, 10, 20 and 30 kPa was obtained. The reinforcing effect of vertical reinforcement in ash joint and polyurea were compared and analyzed. The results show that: (1) The anti-gas explosion capability of the unreinforced wall is relatively weak, which generally causes irreparable damage under the load of 20 kPa and collapses under the load of 30 kPa. (2) The explosion resistance of the masonry wall can be enhanced by the vertical displacement of rebar in the ash joint and the spraying of polyurea on the wall surface. Under the load of 20 kPa, the peak displacement at mid-span of each reinforced wall is smaller than that of the unreinforced wall, and the damage is lighter, which is repairable. Among them, the anti-explosion effect of double-sided spraying polyurea on unreinforced wall surface is the best, and there is no collapse damage under the load of 30 kPa. The reinforcing effect of vertical reinforcement in ash joint and polyurea spraying on the back surface are the second. (3) The three groups of reinforced walls with polyurea can all withstand 30 kPa gas explosion load. Cracks occur in the middle of the wall strengthened by spraying on the explosive side, fragments splash, the mid-span peak displacement is the largest. Local damage occurs at both ends of the wall strengthened by back side and double-sided spraying, and the walls are basically complete, and the mid-span peak displacement of the wall strengthened by double-side spraying is the smallest. It is shown that spraying polyurea on both sides on the basis of vertical reinforcement in ash joint has the best explosion resistance effect, and can also bear greater gas explosion load. The research results can provide reference for the reinforcement of reinforced masonry wall against gas explosion.
-
Key words:
- polyurea /
- reinforced masonry wall /
- gas explosion /
- polyurea
-
表 1 DWW墙体材料参数
Table 1. Material parameters of wall DWW
材料 ρ/(kg·m−3) E/MPa μ $\sigma_{{\mathrm{b}}} $/MPa $\sigma_{{{\tau}}} $/MPa $\sigma_{{\mathrm{s}}} $/MPa KIC/(N·m−1) τ η 砌块 1150 380 0.15 1.00 0.50 9.0 120 0.03 7.16×105 砂浆 2100 4644 0.25 1.76 0.90 17.6 140 0.03 7.16×105 表 2 DWW墙体动态响应及损伤程度表
Table 2. Dynamic response and damage degree of wall DWW
p/kPa $D_{{\mathrm{max}}} $/mm $\sigma_{{\mathrm{b,max}}} $/MPa $ \sigma_{{\mathrm{s,max}}}$/MPa θ/(°) 5 1.99 1.76 3.01 0.1 10 4.25 1.76 6.27 0.2 20 24.80 13.40 20.10 1.0 30 倒塌 10.60 20.20 >13.8 表 3 钢筋材料参数
Table 3. Reinforcement material parameters
材料 $\rho_{{\mathrm{s}}} $/(kg·m−3) Es/MPa μs $\sigma_{{\mathrm{y}}} $/MPa $E_{{\mathrm{t}}} $/MPa Hp c n εf 钢筋 7800 2×105 0.3 300 723 1 40 5 0.1 表 4 DPW墙体动态响应及损伤程度表
Table 4. Dynamic response and damage degree of wall DPW
p/kPa Dmax/mm σb,max/MPa σs,max/MPa σr,max/MPa θ/(°) DPW4 DPW5 DPW4 DPW5 DPW4 DPW5 DPW4 DPW5 DPW4 DPW5 5 1.99 1.99 1.75 1.75 3.01 3.01 6.24 8.07 0.1 0.1 10 4.25 4.24 1.76 1.76 6.21 6.21 35.60 32.00 0.2 0.2 20 21.20 20.70 16.80 15.80 19.90 20.80 410.00 274.00 0.8 0.8 30 倒塌 倒塌 16.00 17.50 24.70 23.20 549.00 503.00 >6.8 >6.9 表 5 聚脲材料参数
Table 5. Polyurea material parameters
材料 ρj/(kg·m−3) Ej/MPa μj εm N 聚脲 1000 212 0.4 0.5 2 表 6 DWJ墙体动态响应及损伤程度表
Table 6. Dynamic response and damage degree of wall DWJ
p/
kPaDmax/mm σb,max/MPa σs,max/MPa σp,max/MPa θ/(°) DWJY DWJB DWJS DWJY DWJB DWJS DWJY DWJB DWJS DWJY DWJB DWJS DWJY DWJB DWJS 5 1.94 1.94 1.89 1.75 1.75 1.76 2.94 2.92 2.87 0.437 0.149 0.430 0.1 0.1 0.1 10 4.14 4.15 4.05 1.76 1.75 1.76 6.10 6.07 5.93 0.695 0.468 0.693 0.2 0.2 0.2 20 18.00 21.40 15.70 8.22 7.70 9.41 19.50 19.00 19.00 9.680 11.500 10.000 0.7 0.8 0.6 30 倒塌 倒塌 67.60 10.00 9.66 17.80 19.20 19.70 19.60 11.300 18.00 12.500 >7.3 >6.4 2.6 表 8 DPJB墙体动态响应及损伤程度
Table 8. Dynamic response and damage of wall DPJB
p/kPa Dmax/mm σb,max/MPa σs,max/MPa σr,max/MPa σp,max/MPa θ/(°) 5 1.94 1.75 2.93 8.4 0.151 0.1 10 4.14 1.76 6.06 31.5 0.467 0.2 20 18.7.0 13.50 19.80 322.0 7.810 0.7 30 106.00 18.80 20.60 522.0 10.000 4.1 表 7 DPJY墙体动态响应及损伤程度
Table 7. Dynamic response and damage of wall DPJY
p/kPa Dmax/mm σb,max/MPa σs,max/MPa σr,max/MPa σp,max/MPa θ/(°) 5 1.94 1.75 2.95 7.22 0.437 0.1 10 4.14 1.76 6.08 28.90 0.330 0.2 20 14.30 15.80 19.70 423.00 9.920 0.5 30 128.00 19.00 22.80 492.00 10.100 4.9 表 9 DPJS墙体动态响应及损伤程度
Table 9. Dynamic response and damage of wall DPJS
p/kPa Dmax/mm σb,max/MPa σs,max/MPa σr,max/MPa σp,max/MPa θ/(°) 5 1.89 1.75 2.87 7.65 0.430 0.1 10 4.04 1.76 5.91 30.60 0.687 0.2 20 13.30 14.00 19.20 289.00 9.790 0.5 30 53.80 17.40 20.70 474.00 11.500 2.1 -
[1] 田玉滨, 李朝, 张春巍. 爆炸荷载作用下配筋砌体结构的动力响应 [J]. 爆炸与冲击, 2012, 32(6): 658–662. DOI: 10.11883/1001-1455(2012)06-0658-05.TIAN Y B, LI Z, ZHANG C W. Dynamic response of reinforced masonry structure under blast load [J]. Explosion and Shock Waves, 2012, 32(6): 658–662. DOI: 10.11883/1001-1455(2012)06-0658-05. [2] 李朝. 基于ANSYS/LS-DYNA软件的配筋砌块墙体爆炸数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2007: 39–62.LI Z. Numerical simulation of explode against reinforced masonry wall using ANSYS/LS-DYNA [D]. Harbin: Harbin Institute of Technology, 2007: 39–62. [3] 尚伟, 黄正祥, 祖旭东, 等. 接触爆炸下聚脲加固砌体墙的抗爆性能试验研究[C]//中国力学大会论文集(CCTAM 2019). 杭州: 中国力学学会, 2019: 3843–3851. [4] 谢超, 韩笑, 魏雪英. 配筋混凝土砌块墙体的爆炸效应分析[C]//第21届全国结构工程学术会议论文集第Ⅲ册. 北京: 《工程力学》杂志社, 2012: 347–352. [5] GU M, LING X D, WANG H X, et al. Experimental and numerical study of polymer-retrofitted masonry walls under gas explosions [J]. Processes, 2019, 7(12): 863. DOI: 10.3390/pr7120863. [6] 熊轩. 钢筋混凝土框架结构中砌体填充墙抗燃气爆炸性能研究[D]. 武汉: 武汉理工大学, 2013: 33–55.XIONG X. Study on masonry infilled wall in reinforced concrete frame structure under gas explosion load [D]. Wuhan: Wuhan University of Technology, 2013: 13–55. [7] 韩笑. 燃气爆炸荷载下砖砌墙体的动力响应研究[D]. 西安: 长安大学, 2012: 65–75.HAN X. The dynamic response of brick masonry wall subjected to gas explosion load [D]. Xi’an: Chang’an University, 2012: 65–75. [8] 彭培, 李展, 张亚栋, 等. 燃气爆炸作用下蒸压加气混凝土砌体墙的加固性能 [J]. 爆炸与冲击, 2020, 40(3): 035101. DOI: 10.11883/bzycj-2018-0252.PENG P, LI Z, ZHANG Y D, et al. Performance of retrofitted autoclaved aerated concrete masonry walls subjected to gas explosions [J]. Explosion and Shock Waves, 2020, 40(3): 035101. DOI: 10.11883/bzycj-2018-0252. [9] GODIO M, PORTAL N W, FLANSBJER M, et al. Experimental and numerical approaches to investigate the out-of-plane response of unreinforced masonry walls subjected to free far-field blasts [J]. Engineering Structures, 2021, 239: 112328. DOI: 10.1016/j.engstruct.2021.112328. [10] LI Z, CHEN L, FANG Q, et al. Experimental and numerical study of basalt fiber reinforced polymer strip strengthened autoclaved aerated concrete masonry walls under vented gas explosions [J]. Engineering Structures, 2017, 152: 901–919. DOI: 10.1016/j.engstruct.2017.09.055. [11] SHEARER M J, TAM V H Y, CORRB. Analysis of results from large scale hydrocarbon gas explosions [J]. Journal of Loss Prevention in the Process Industries, 2000, 13(2): 167–173. DOI: 10.1016/S0950-4230(99)00020-0. [12] 韩永利, 陈龙珠. 燃气爆炸事故对住宅建筑的破坏 [J]. 土木建筑与环境工程, 2011, 33(6): 120–123,128. DOI: 10.3969/j.issn.1674-4764.2011.06.020.HAN Y L, CHEN L Z. Failure analysis of residential buildings under the gas explosion accident [J]. Journal of Civil, Architectural& Environmental Engineering, 2011, 33(6): 120–123,128. DOI: 10.3969/j.issn.1674-4764.2011.06.020. [13] HAN Y L, CHEN L Z. Mechanical model of domestic gas explosion load [J]. Transactions of Tianjin University, 2008, 14(6): 434–440. DOI: 10.1007/s12209-008-0075-x. [14] 陈力, 郑康, 祝融, 等. CFRP加固砌体填充墙抗燃气爆炸泄爆荷载的优化设计及动力响应 [J]. 天津大学学报(自然科学与工程技术版), 2018, 51(5): 547–553. DOI: 10.11784/tdxbz201706061.CHEN L, ZHENG K, ZHU R, et al. Optimization design and dynamic responses of CFRP reinforced masonry infilled wall subjected to vented gas explosion [J]. Journal of Tianjin University (Science and Technology), 2018, 51(5): 547–553. DOI: 10.11784/tdxbz201706061. [15] 王钰颖, 柳锦春, 孙妮. 砌体墙抗爆性能数值模拟的精度和效率分析[C]//2021年工业建筑学术交流会论文集(下册). 北京: 《工业建筑》杂志社, 2021: 316–320, 357. [16] 李展. 燃气泄爆荷载及其对砌体填充墙破坏效应研究[D]. 南京: 陆军工程大学, 2018: 33–46. [17] U. S. Department of the Army, Navy and the Air Force. UFC 3-340-02Structures to resist the effects of accidental explosions, with change 2 [S]. Washington: U. S. Department of Defense, 2008. [18] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. GB 50003-2011砌体结构设计规范[S]. 北京: 中国计划出版社, 2012.Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. GB 50003-2011Code for design of masonry structures [S]. Beijing: China Planning Press, 2012. [19] 吴志昇, 宋殿义, 严波, 等. 接触爆炸作用下钢筋混凝土单向板动态响应的数值分析[C]//第27届全国结构工程学术会议论文集(第Ⅱ册). 北京: 《工程力学》杂志社, 2018: 425–434. [20] 闫俊伯, 刘彦, 李亚飞, 等. 不同强度混凝土及钢筋对钢筋混凝土柱抗爆性能的影响 [J]. 兵工学报, 2021, 42(3): 530–544. DOI: 10.3969/j.issn.1000-1093.2021.03.009.YAN J B, LIU Y, LI Y F, et al. Effects of high performance concrete and high strength steel on the blast response of steel reinforced concrete columns [J]. Acta Armamentarii, 2021, 42(3): 530–544. DOI: 10.3969/j.issn.1000-1093.2021.03.009. [21] 王军国. 喷涂聚脲加固粘土砖砌体抗动载性能试验研究及数值分析[D]. 合肥: 中国科学技术大学, 2017: 105.WANG J G. Experimental and numerical investigation of clay brick masonry walls strengthened with spary polyurea elastomer under blast loads [D]. Hefei: University of Science and Technology of China, 2017: 105. [22] 许三罗, 方秦. 弹性聚合物和碳纤维布加固的砌体墙抗爆性能的数值分析 [J]. 解放军理工大学学报(自然科学版), 2010, 11(3): 306–311. DOI: 10.7666/j.issn.1009-3443.20100313.XU S L, FANG Q. Numerical analysis on blast-resistant capacity of masonry walls retrofitted with elastomeric polymer and CFRP [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2010, 11(3): 306–311. DOI: 10.7666/j.issn.1009-3443.20100313. [23] 王钰颖. 喷涂聚脲加固砌体墙抗燃气爆炸性能数值分析[D]. 南京: 南京航空航天大学, 2022: 29–30.WANG Y Y. Numerical analysis of gas explosion resistance of masonry wall strengthened with spray polyuria [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2022: 29–30. [24] 孙妮, 柳锦春, 王钰颖. 聚脲材料动态压缩力学行为的数值模拟研究 [J]. 工程力学, 2023, 40(1): 144–154. DOI: 10.6052/j.issn.1000-4750.2021.08.0596.SUN N, LIU J C, WANG Y Y. Numerical simulation research on dynamic compression mechanical behavior of polyurea [J]. Engineering Mechanics, 2023, 40(1): 144–154. DOI: 10.6052/j.issn.1000-4750.2021.08.0596.