基于小尺寸模型分析氢氧旋转爆轰波传播的不稳定性机制

徐鸿飞 王放 武郁文 翁春生

徐鸿飞, 王放, 武郁文, 翁春生. 基于小尺寸模型分析氢氧旋转爆轰波传播的不稳定性机制[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0130
引用本文: 徐鸿飞, 王放, 武郁文, 翁春生. 基于小尺寸模型分析氢氧旋转爆轰波传播的不稳定性机制[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0130
XU Hongfei, WANG Fang, WU Yuwen, WENG Chunsheng. Investigation into the instability mechanism of hydrogen-oxygen rotating detonation wave propagation using a small-scale model[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0130
Citation: XU Hongfei, WANG Fang, WU Yuwen, WENG Chunsheng. Investigation into the instability mechanism of hydrogen-oxygen rotating detonation wave propagation using a small-scale model[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0130

基于小尺寸模型分析氢氧旋转爆轰波传播的不稳定性机制

doi: 10.11883/bzycj-2024-0130
基金项目: 国家自然科学基金(12202204);江苏省自然科学基金(BK20220953)
详细信息
    作者简介:

    徐鸿飞(1999- ),男,硕士研究生,122121011548@njust.edu.cn

    通讯作者:

    王 放(1993- ),男,博士,教授,wfnjust@126.com

  • 中图分类号: O381; V437

Investigation into the instability mechanism of hydrogen-oxygen rotating detonation wave propagation using a small-scale model

  • 摘要: 氢氧的高反应活性给旋转爆轰波的稳定传播带来了巨大的挑战,为研究氢氧旋转爆轰波传播不稳定性,通过改变当量比对小尺寸模型下二维氢氧旋转爆轰波进行数值模拟研究,揭示了氢氧旋转爆轰波复杂多变的传播特性,并分析了典型流场结构,探讨了传播模态的不稳定性以及爆轰波湮灭和再起爆机制。结果表明:随着当量比的提高,流场内分别呈现熄爆、单波、单双波混合3种传播模态,且爆轰波的传播速度随当量比的增大几乎呈线性提高,速度亏损为5%~8%。激波的扰动使得爆燃面失稳产生明显的扭曲和褶皱,氢氧的高反应活性让爆燃面明显分层且在2个分界面上呈现不同的不稳定性,上分界面为Kelvin-Helmholt (K-H)不稳定性,下分界面为Rayleigh-Taylor (R-T)不稳定性。单双波混合模态下爆轰波极不稳定,保持湮灭、单波、双波对撞3种状态之间循环。爆轰波有2种湮灭方式:一是双波对撞导致爆轰波湮灭,二是爆燃面燃烧加剧使得爆燃面下移导致爆轰波湮灭。再起爆的主要原因是:R-T不稳定性诱导爆轰产物与新鲜预混气在爆燃面上相互挤压产生尖峰和气泡结构,增强爆燃面上的反应放热,产生了局部热点并逐渐增强为爆轰波,实现爆燃转爆轰。
  • 图  1  二维计算模型

    Figure  1.  Two-dimensional computational model

    图  2  不同网格尺寸下的温度云图

    Figure  2.  Temperature contours under different grid sizes

    图  3  不同当量比下爆轰波的传播速度和速度亏损

    Figure  3.  Detonation wave velocities and velocity deficits at different equivalence ratios

    图  4  工况4下流场温度和压力梯度云图

    Figure  4.  Temperature and pressure gradient contours in case 4

    图  5  工况9下流场温度梯度、马赫数、密度和速度云图

    Figure  5.  Temperature gradient, Mach number, density and velocity contours in case 9

    图  6  密度云图中S2分界面处Atwood数的分布

    Figure  6.  Distribution of Atwood number along the contact surface S2 in the density contour

    图  7  斜压扭矩的大小分布及沿S2表面的局部放大图

    Figure  7.  Distribution of baroclinic torque and local enlarged view along the contact surface S2

    图  8  工况5下压力变化曲线

    Figure  8.  Time curve of pressure in case 5

    图  9  工况5单双波混合模态下流场发生对撞过程的温度云图

    Figure  9.  Temperature contours of collision of detonation waves in hybrid waves in case 5

    图  10  工况5下入口处各组分质量分数和热释放率

    Figure  10.  Mass fraction and heat release rate curves of different components at the inlet boundary in case 5

    图  11  爆轰波发生湮灭时温度和温度梯度云图

    Figure  11.  Temperature and temperature gradient contours during detonation wave quenching

    图  12  爆轰波再起爆时温度云图

    Figure  12.  Temperature contours during reinitiation

    图  13  氢氧旋转爆轰波传播不稳定机制总结

    Figure  13.  Summary of the unstable mechanism of hydrogen-oxygen rotating detonation wave propagation

    表  1  爆轰波的传播速度、温度和压力的数值模拟结果和Chapman-Jouguet理论计算结果的对比

    Table  1.   Numerically-simulated propagation velocity, temperature, and pressure of detonation wave compared with ones calculated by the Chapman-Jouguet theory

    温度 压力 速度/(m∙s−1)
    模拟值/K 理论值/K 误差/% 模拟值/MPa 理论值/MPa 误差/% 模拟值 理论值 误差/%
    3687.31 3675.81 0.31 1.88 1.89 0.53 2881.8 2835.7 1.63
    下载: 导出CSV

    表  2  不同网格尺寸下的爆轰参数

    Table  2.   Detonation parameters under different grid sizes

    网格尺寸/mm 速度/(m∙s−1) 温度/K 压力/MPa
    0.015 1 979 3049 12.8
    0.020 1 975 3062 13.3
    0.025 1 962 3085 14.4
    下载: 导出CSV

    表  3  不同当量比工况下的计算结果

    Table  3.   Calculation results at different equivalence ratios

    工况 当量比 速度/(m∙s−1) 速度亏损/% 传播模态
    1 0.20 熄灭
    2 0.25 熄灭
    3 0.28 1 878 7.38 单波
    4 0.33 1 975 6.09 单波
    5 0.42 2131 6.05 单双波混合
    6 0.55 2294 6.41 单双波混合
    7 0.70 2486 5.61 单双波混合
    8 0.89 2676 5.49 单双波混合
    9 1.09 2838 5.59 单双波混合
    下载: 导出CSV

    表  4  爆轰波发生湮灭各个时刻的HfHdHs

    Table  4.   Hf, Hd and Hs during detonation wave quenching

    t/ms Hf /mm Hd/mm Hs/mm
    0.300 5.72 4.16 1.56
    0.336 4.68 2.60 2.08
    0.372 3.90 1.56 2.34
    0.388 3.38 0.00 3.38
    下载: 导出CSV
  • [1] LIU Y, ZHOU W J, YANG Y J, et al. Numerical study on the instabilities in H2-air rotating detonation engines [J]. Physics of Fluids, 2018, 30(4): 046106. DOI: 10.1063/1.5024867.
    [2] MA J Z, LUAN M Y, XIA Z J, et al. Recent progress, development trends, and consideration of continuous detonation engines [J]. AIAA Journal, 2020, 58(12): 4976–5035. DOI: 10.2514/1.J058157.
    [3] VERREAULT J, HIGGINS A J. Initiation of detonation by conical projectiles [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2311–2318. DOI: 10.1016/j.proci.2010.07.086.
    [4] FAN W, YAN C J, HUANG X Q, et al. Experimental investigation on two-phase pulse detonation engine [J]. Combustion and Flame, 2003, 133(4): 441–450. DOI: 10.1016/S0010-2180(03)00043-9.
    [5] LU F K, BRAUN E M. Rotating detonation wave propulsion: experimental challenges, modeling, and engine concepts [J]. Journal of Propulsion and Power, 2014, 30(5): 1125–1142. DOI: 10.2514/1.B34802.
    [6] PENG H Y, LIU W D, LIU S J, et al. Hydrogen-air, ethylene-air, and methane-air continuous rotating detonation in the hollow chamber [J]. Energy, 2020, 211: 118598. DOI: 10.1016/j.energy.2020.118598.
    [7] BOHON M D, BLUEMNER R, PASCHEREIT C O, et al. High-speed imaging of wave modes in an RDC [J]. Experimental Thermal and Fluid Science, 2019, 102: 28–37. DOI: 10.1016/j.expthermflusci.2018.10.031.
    [8] 吴明亮, 郑权, 续晗, 等. 氢气占比对氢气-煤油-空气旋转爆轰波传播特性的影响 [J]. 兵工学报, 2022, 43(1): 86–97. DOI: 10.3969/j.issn.1000-1093.2022.01.010.

    WU M L, ZHENG Q, XU H, et al. The influence of hydrogen proportion on the propagation characteristics of hydrogen-kerosene-air rotating detonation waves [J]. Acta Armamentarii, 2022, 43(1): 86–97. DOI: 10.3969/j.issn.1000-1093.2022.01.010.
    [9] 张允祯, 程杪, 荣光耀, 等. 低频爆轰不稳定性形成机理的数值模拟研究 [J]. 爆炸与冲击, 2021, 41(9): 092101. DOI: 10.11883/bzycj-2020-0239.

    ZHANG Y Z, CHENG M, RONG G Y, et al. Numerical investigation on formation mechanism of low-frequency detonation instability [J]. Explosion and Shock Waves, 2021, 41(9): 092101. DOI: 10.11883/bzycj-2020-0239.
    [10] 杨帆, 姜春雪, 王宇辉, 等. 煤油液滴直径对两相旋转爆轰发动机流场的影响 [J]. 爆炸与冲击, 2023, 43(2): 022101. DOI: 10.11883/bzycj-2022-0068.

    YANG F, JIANG C X, WANG Y H, et al. Influence of kerosene droplet diameters on the flow field of a two-phase rotating detonation engine [J]. Explosion and Shock Waves, 2023, 43(2): 022101. DOI: 10.11883/bzycj-2022-0068.
    [11] 丁陈伟, 翁春生, 武郁文, 等. 基于液体碳氢燃料的旋转爆轰燃烧特性研究 [J]. 爆炸与冲击, 2022, 42(2): 022101. DOI: 10.11883/bzycj-2021-0065.

    DING C W, WENG C S, WU Y W, et al. Combustion characteristics of rotating detonation based on liquid hydrocarbon fuel [J]. Explosion and Shock Waves, 2022, 42(2): 022101. DOI: 10.11883/bzycj-2021-0065.
    [12] 张树杰, 张立锋, 姚松柏, 等. 当量比对连续旋转爆轰发动机的影响研究 [J]. 兵工学报, 2017, 38(S1): 1–7.

    ZHANG S J, ZHANG L F, YAO S B, et al. Numerical investigation on rotating detonation engine with varying equivalence ratios [J]. Acta Armamentarii, 2017, 38(S1): 1–7.
    [13] 孟庆洋, 赵宁波, 郑洪涛, 等. 非预混条件下的旋转爆轰燃烧室双波头演化过程数值模拟 [J]. 航空动力学报, 2019, 34(1): 51–62. DOI: 10.13224/j.cnki.jasp.2019.01.007.

    MENG Q Y, ZHAO N B, ZHENG H T, et al. Numerical study on the two-wave transition process in rotating detonation combustor under separate injection condition [J]. Journal of Aerospace Power, 2019, 34(1): 51–62. DOI: 10.13224/j.cnki.jasp.2019.01.007.
    [14] JOURDAINE N, TSUBOI N, OZAWA K, et al. Three-dimensional numerical thrust performance analysis of hydrogen fuel mixture rotating detonation engine with aerospike nozzle [J]. Proceedings of the Combustion Institute, 2019, 37(3): 3443–3451. DOI: 10.1016/j.proci.2018.09.024.
    [15] FAN L Z, SHI Q, ZHI Y, et al. Experimental and numerical study on multi-wave modes of H2/O2 rotating detonation combustor [J]. International Journal of Hydrogen Energy, 2022, 47(26): 13121–13133. DOI: 10.1016/j.ijhydene.2022.02.048.
    [16] ANAND V, ST. GEORGE A, DRISCOLL R, et al. Characterization of instabilities in a Rotating Detonation Combustor [J]. International Journal of Hydrogen Energy, 2015, 40(46): 16649–16659. DOI: 10.1016/j.ijhydene.2015.09.046.
    [17] HISHIDA M, FUJIWARA T, WOLANSKI P. Fundamentals of rotating detonations [J]. Shock Waves, 2009, 19(1): 1–10. DOI: 10.1007/s00193-008-0178-2.
    [18] LI Q, LIU P X, ZHANG H X. Further investigations on the interface instability between fresh injections and burnt products in 2-D rotating detonation [J]. Computers & Fluids, 2018, 170: 261–272. DOI: 10.1016/j.compfluid.2018.05.005.
    [19] LIU P X, LI Q, HUANG Z F, et al. Interpretation of wake instability at slip line in rotating detonation [J]. International Journal of Computational Fluid Dynamics, 2018, 32(8/9): 379–394. DOI: 10.1080/10618562.2018.1533634.
    [20] ZHAO M J, LI J M, TEO C J, et al. Effects of variable total pressures on instability and extinction of rotating detonation combustion [J]. Flow, Turbulence and Combustion, 2020, 104(1): 261–290. DOI: 10.1007/s10494-019-00050-y.
    [21] STECHMANN D P. Experimental study of high-pressure rotating detonation combustion in rocket environments [D]. West Lafayette: Purdue University, 2017.
    [22] WANG Y H, WANG J P. Coexistence of detonation with deflagration in rotating detonation engines [J]. International Journal of Hydrogen Energy, 2016, 41(32): 14302–14309. DOI: 10.1016/j.ijhydene.2016.06.026.
    [23] BYKOVSKII F A, ZHDAN S A, VEDERNIKOV E F, et al. Continuous detonation of a hydrogen-oxygen gas mixture in a 100-mm plane-radial combustor with exhaustion toward the periphery [J]. Shock Waves, 2020, 30(3): 235–243. DOI: 10.1007/s00193-019-00919-x.
    [24] BYKOVSKII F A, ZHDAN S A, VEDERNIKOV E F, et al. Detonation combustion of a hydrogen–oxygen mixture in a plane–radial combustor with exhaustion toward the center [J]. Combustion, Explosion, and Shock Waves, 2016, 52(4): 446–456. DOI: 10.1134/s0010508216040080.
    [25] KELLER P K, POLANKA M D, SCHAUER F R, et al. Low mass-flow operation of small-scale rotating detonation engine [J]. Applied Thermal Engineering, 2024, 241: 122352. DOI: 10.1016/j.applthermaleng.2024.122352.
    [26] HUANG Z W, ZHAO M J, XU Y, et al. Eulerian-Lagrangian modelling of detonative combustion in two-phase gas-droplet mixtures with OpenFOAM: validations and verifications [J]. Fuel, 2021, 286: 119402. DOI: 10.1016/j.fuel.2020.119402.
    [27] ZHANG H W, ZHAO M J, HUANG Z W. Large eddy simulation of turbulent supersonic hydrogen flames with OpenFOAM [J]. Fuel, 2020, 282: 118812. DOI: 10.1016/j.fuel.2020.118812.
    [28] CONAIRE M Ó, CURRAN H J, SIMMIE J M, et al. A comprehensive modeling study of hydrogen oxidation [J]. International Journal of Chemical Kinetics, 2004, 36(11): 603–622. DOI: 10.1002/kin.20036.
    [29] LIU X Y, LUAN M Y, CHEN Y L, et al. Flow-field analysis and pressure gain estimation of a rotating detonation engine with banded distribution of reactants [J]. International Journal of Hydrogen Energy, 2020, 45(38): 19976–19988. DOI: 10.1016/j.ijhydene.2020.05.102.
    [30] BENGOECHEA S, REISS J, LEMKE M, et al. Adjoint-based optimisation of detonation initiation by a focusing shock wave [J]. Shock Waves, 2021, 31(7): 789–805. DOI: 10.1007/s00193-020-00973-w.
    [31] RUDY W, ZBIKOWSKI M, TEODORCZYK A. Detonations in hydrogen-methane-air mixtures in semi confined flat channels [J]. Energy, 2016, 116: 1479–1483. DOI: 10.1016/j.energy.2016.06.001.
    [32] RUDY W, KUZNETSOV M, POROWSKI R, et al. Critical conditions of hydrogen-air detonation in partially confined geometry [J]. Proceedings of the Combustion Institute, 2013, 34(2): 1965–1972. DOI: 10.1016/j.proci.2012.07.019.
    [33] WANG F, WENG C S, ZHANG H W. Semi-confined layered kerosene/air two-phase detonations bounded by nitrogen gas [J]. Combustion and Flame, 2023, 258: 113104. DOI: 10.1016/j.combustflame.2023.113104.
    [34] ZHANG S, YAO S, LUAN M, et al. Effects of injection conditions on the stability of rotating detonation waves [J]. Shock Waves, 2018, 28(5): 1079–1087. DOI: 10.1007/s00193-018-0854-9.
    [35] GOODWIN G B, ORAN E S. Premixed flame stability and transition to detonation in a supersonic combustor [J]. Combustion and Flame, 2018, 197: 145–160. DOI: 10.1016/j.combustflame.2018.07.008.
    [36] MENG Q Y, ZHAO M J, ZHENG H T, et al. Eulerian-Lagrangian modelling of rotating detonative combustion in partially pre-vaporized n-heptane sprays with hydrogen addition [J]. Fuel, 2021, 290: 119808. DOI: 10.1016/j.fuel.2020.119808.
    [37] GEORGE A C S, DRISCOLL R B, ANAND V, et al. Starting transients and detonation onset behavior in a rotating detonation combustor [C]//Proceedings of the 54th AIAA Aerospace Sciences Meeting. San Diego: AIAA, 2016. DOI: 10.2514/6.2016-0126.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  7
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-09
  • 修回日期:  2024-07-12
  • 网络出版日期:  2024-07-18

目录

    /

    返回文章
    返回