钨纤维增强金属玻璃复合材料的长杆弹斜侵彻/穿甲性能

章浪 赵丰鹏 张钰忠 邓勇军 李继承

章浪, 赵丰鹏, 张钰忠, 邓勇军, 李继承. 钨纤维增强金属玻璃复合材料的长杆弹斜侵彻/穿甲性能[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0158
引用本文: 章浪, 赵丰鹏, 张钰忠, 邓勇军, 李继承. 钨纤维增强金属玻璃复合材料的长杆弹斜侵彻/穿甲性能[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0158
ZHANG Lang, ZHAO Fengpeng, ZHANG Yuzhong, DENG Yongjun, LI Jicheng. Ballistic performance of tungsten fiber-reinforced metallic glass composite in the long rod oblique penetration/perforation[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0158
Citation: ZHANG Lang, ZHAO Fengpeng, ZHANG Yuzhong, DENG Yongjun, LI Jicheng. Ballistic performance of tungsten fiber-reinforced metallic glass composite in the long rod oblique penetration/perforation[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0158

钨纤维增强金属玻璃复合材料的长杆弹斜侵彻/穿甲性能

doi: 10.11883/bzycj-2024-0158
基金项目: 四川省自然科学基金杰出青年科学基金(2023NSFSC1913);国家国防科技工业局科研专项项目(KJSP2023020304)
详细信息
    作者简介:

    章 浪(2000- ),男,硕士研究生,1544336025@qq.com

    通讯作者:

    李继承(1984- ),男,博士,副研究员,lijc401@caep.cn

  • 中图分类号: O385

Ballistic performance of tungsten fiber-reinforced metallic glass composite in the long rod oblique penetration/perforation

  • 摘要: 基于钨纤维和金属玻璃基体的实际分布特性,建立复合材料弹体的细观有限元几何模型,采用修正的热力耦合本构模型来描述金属玻璃基体的高强度和高剪切敏感性,结合相关的斜侵彻/穿甲试验,开展复合材料长杆弹斜侵彻/穿甲钢靶的三维有限元模拟,与钨合金弹进行对比分析,讨论弹靶变形和破坏特征,分析了撞击倾角、撞击速度等因素对复合材料弹体侵彻/穿甲“自锐”行为以及弹道特征的影响。结果表明,在斜侵彻/穿甲条件下,由于弹体头部受力的非对称特征,弹头逐渐锐化为非对称的尖头构型,同时弹道偏转,复合材料弹体的“自锐”性能以及侵彻/穿甲能力下降。撞击速度对斜侵彻/穿甲条件下弹体的“自锐”特征及弹道行为有显著影响,低速撞击条件下,撞击倾角越大,弹体侵彻性能越弱;当倾角增大到50°时,撞击速度小于900 m/s的弹体均难以有效侵彻靶板;倾角进一步增大时,弹体容易跳飞。
  • 图  1  穿甲试验中复合材料弹体的初始形貌[9]

    Figure  1.  Initial composite long rod in the penetrating test[9]

    图  2  弹靶结构与撞击姿态示意图

    Figure  2.  Schematic diagram of the projectile and target structures as well as the impact attitude

    图  3  复合材料长杆弹的三维有限元模型

    Figure  3.  3D finite element geometrical model of a composite long rod

    图  4  钨合金弹斜侵彻30CrMnMo钢靶的弹靶变形和破坏形貌(θ=50°,v0=1235.1 m/s)

    Figure  4.  Deformation and failure morphologies of projectile and target materials after the oblique impact of tungsten alloy long rod onto 30CrMnMo steel target (θ=50°, v0=1235.1 m/s)

    图  5  复合材料弹斜侵彻30CrMnMo钢靶的弹靶变形和破坏形貌(θ=50°,v0=1263.9 m/s)

    Figure  5.  Deformation and failure morphologies of projectile and target materials after the oblique impact of composite long rod onto 30CrMnMo steel target (θ=50°, v0=1263.9 m/s)

    图  6  钨合金弹在不同撞击倾角和速度下的残余弹体形貌

    Figure  6.  Residual tungsten alloy projectiles after the impact at various oblique angles and initial velocities

    图  7  复合材料弹在不同撞击倾角和速度下的残余弹体形貌

    Figure  7.  Residual composite projectiles after the impact at various oblique angles and initial velocities

    图  8  钨合金弹斜侵彻靶板时弹靶的塑性应变发展历程(θ=50°,v0=1235.1 m/s)

    Figure  8.  Development of effective plastic strain in the projectile and target materials during the penetration of tungsten alloy long rod (θ=50°, v0=1235.1 m/s)

    图  9  复合材料弹斜侵彻靶板时弹靶的塑性应变发展历程(θ=50°,v0=1263.9 m/s)

    Figure  9.  Development of effective plastic strain in the projectile and target materials during the penetration of composite long rod (θ=50°, v0=1263.9 m/s)

    图  10  不同弹体斜侵彻/穿甲后靶板孔洞的轮廓形貌(θ=50°)

    Figure  10.  Contour morphologies of penetrating hole in the target after the impact of different long rods (θ=50°)

    图  11  不同弹体在不同侵彻/穿甲条件下的速度变化曲线

    Figure  11.  Variations of projectile velocity corresponding to different long rods and impact conditions

    图  12  复合材料弹体在不同速度下撞击钢靶的弹靶变形和破坏历程(θ=30°)

    Figure  12.  Deformation and failure process of projectile and target materials during the penetration of composite long rod at different impact velocities (θ=30°)

    图  13  复合材料弹体在不同倾角和速度条件下撞击钢靶的最终弹靶变形和破坏形貌

    Figure  13.  Final deformation and failure morphologies of projectile and target materials after the impact of composite long rod at different oblique angles and initial velocities

    图  14  复合材料弹体以不同速度和倾角侵彻/穿甲钢靶后靶板孔洞的轮廓形貌

    Figure  14.  Contour morphologies of penetrating hole in the target after the impact of composite long rod at different initial velocities and oblique angles

    图  15  复合材料弹体以不同速度和倾角侵彻/穿甲钢靶后残余弹体的形貌

    Figure  15.  Residual projectiles after the penetration/perforation of composite long rod at different initial velocities and oblique angles

    图  16  复合材料弹体以不同速度和倾角侵彻/穿甲钢靶时弹体的速度变化曲线

    Figure  16.  Variations of composite long rod velocity corresponding to different initial velocities and oblique angles

    表  1  锆基金属玻璃的修正热力耦合模型参数[25-26]

    Table  1.   Parameters in the modified coupled thermo-mechanical constitutive model for Zr-based metallic glass[25-26]

    参量 符号 单位 数值
    弹性模量 E GPa 96
    泊松比 ν 0.36
    密度 ρ kg/m3 6125
    熔化温度 Tm K 993
    玻璃转变温度 Tg K 625
    初始温度 T0 K 300
    比定容热容 cV J/(kg·K) 400
    临界体积 v* m3 2.0×10−29
    平均原子体积 Ω m3 2.5×10−29
    原子振动频率 f s−1 1×1013
    临界破坏自由体积浓度 ξc 0.065
    初始自由体积浓度 ξ0 0.05
    运动激活能 ΔGm eV ΔGm($ \dot \varepsilon $)
    几何因子 α 0.05
    所需跃迁次数 nD 3
    静水应力敏感因子 Λ 0.05(Λc
    0.35(Λt
    下载: 导出CSV

    表  2  金属材料的Johnson-Cook模型参数

    Table  2.   Johnson-Cook model parameters of metallic materials

    材料 ρ/(kg·m−3) ν E/GPa $\dot{{\varepsilon }_{ {0}}} $/s−1 Tr/K Tm/K cV/(J·kg−1·K−1)
    95W钨合金 17900 0.28 410 1 300 1752 134
    30CrMnMo钢 7850 0.29 200 1 300 1793 477
    材料 A/MPa B/MPa C m n D1 D2
    95W钨合金 1650 450 0.016 1.00 0.12 3.00 0
    30CrMnMo钢 1200 310 0.014 1.03 0.26 3.20 0
    材料 D3 D4 D5 C0/(m·s−1) S1 γ0 a
    95W钨合金 0 0 0 3850 1.44 1.58 0
    30CrMnMo钢 0 0 0 4578 1.38 1.67 0.47
    下载: 导出CSV

    表  3  侵彻试验[9]以及相应的数值模拟结果

    Table  3.   Penetrating test[9] and the corresponding simulation results

    弹材 撞击速度/
    (m·s−1)
    倾角/
    (°)
    侵彻深度/mm 剩余弹长/mm
    试验[9] 模拟 试验[9] 模拟
    钨合金 852.9 0 23.4 22.2[15] 14.1* 13.2[15]
    1076.2 0 背面鼓包 47.7[15] 14.1[15]
    1235.1 50 背面鼓包 49.7 12.8
    复合材料 857.5 0 36.4 32.3[15] 18.8* 17.1[15]
    1066.3 0 穿透 穿透[15] 28.0* 26.0[15]
    1263.9 50 穿透 穿透 14.5
    下载: 导出CSV
  • [1] CAI W D, LI Y, DOWDING R J, et al. A review of tungsten-based alloys as kinetic energy penetrator materials [J]. Reviews in Particulate Materials, 1995, 3: 71–131. DOI: 10.1108/13552549510104456.
    [2] MAGNESS L S. High strain rate deformation behaviors of kinetic energy penetrator materials during ballistic impact [J]. Mechanics of Materials, 1994, 17(2/3): 147–154. DOI: 10.1016/0167-6636(94)90055-8.
    [3] BLEISE A, DANESI P R, BURKART W. Properties, use and health effects of depleted uranium (DU): a general overview [J]. Journal of Environmental Radioactivity, 2003, 64(2/3): 93–112. DOI: 10.1016/s0265-931x(02)00041-3.
    [4] 李继承, 陈小伟. 块体金属玻璃及其复合材料的压缩剪切特性和侵彻/穿甲“自锐”行为 [J]. 力学进展, 2011, 41(5): 480–518. DOI: 10.6052/1000-0992-2011-5-lxjzJ2011-056.

    LI J C, CHEN X W. Compressive-shear behavior and self-sharpening of bulk metallic glasses and their composite materials [J]. Advances in Mechanics, 2011, 41(5): 480–518. DOI: 10.6052/1000-0992-2011-5-lxjzJ2011-056.
    [5] DAI L H, BAI Y L. Basic mechanical behaviors and mechanics of shear banding in BMGs [J]. International Journal of Impact Engineering, 2008, 35(8): 704–716. DOI: 10.1016/j.ijimpeng.2007.10.007.
    [6] GREER A L, CHENG Y Q, MA E. Shear bands in metallic glasses [J]. Materials Science and Engineering R: Reports, 2013, 74(4): 71–132. DOI: 10.1016/j.mser.2013.04.001.
    [7] CONNER R D, DANDLIKER R B, SCRUGGS V, et al. Dynamic deformation behavior of tungsten-fiber/metallic-glass matrix composites [J]. International Journal of Impact Engineering, 2000, 24(5): 435–444. DOI: 10.1016/s0734-743x(99)00176-1.
    [8] CHOI-YIM H, CONNER R D, SZUECS F, et al. Quasistatic and dynamic deformation of tungsten reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass matrix composites [J]. Scripta Materialia, 2001, 45(9): 1039–1045. DOI: 10.1016/s1359-6462(01)01134-4.
    [9] 雷波. 钨纤维复合材料穿甲弹芯自锐行为的试验研究 [D]. 沈阳: 沈阳理工大学, 2008.
    [10] 荣光, 黄德武. 钨纤维复合材料穿甲弹芯侵彻时的自锐现象 [J]. 爆炸与冲击, 2009, 29(4): 351–355. DOI: 10.11883/1001-1455(2009)04-0351-05.

    RONG G, HUANG D W. Self-sharpening phenomena of tungsten fiber composite material penetrators during penetration [J]. Explosion and Shock Waves, 2009, 29(4): 351–355. DOI: 10.11883/1001-1455(2009)04-0351-05.
    [11] RONG G, HUANG D W, YANG M C. Penetrating behaviors of Zr-based metallic glass composite rods reinforced by tungsten fibers [J]. Theoretical and Applied Fracture Mechanics, 2012, 58(1): 21–27. DOI: 10.1016/j.tafmec.2012.02.003.
    [12] 陈小伟, 李继承, 张方举, 等. 钨纤维增强金属玻璃复合材料弹穿甲钢靶的实验研究 [J]. 爆炸与冲击, 2012, 32(4): 346–354. DOI: 10.11883/1001-1455(2012)04-0346-09.

    CHEN X W, LI J C, ZHANG F J, et al. Experimental research on the penetration of tungsten-fiber/metallic glass-matrix composite material penetrator into steel target [J]. Explosion and Shock Waves, 2012, 32(4): 346–354. DOI: 10.11883/1001-1455(2012)04-0346-09.
    [13] 夏龙祥. 钨纤维增强块体金属非晶复合材料侵彻行为研究 [D]. 南京: 南京理工大学, 2013.
    [14] CHEN X W, WEI L M, LI J C. Experimental research on the long rod penetration of tungsten-fiber/Zr-based metallic glass matrix composite into Q235 steel target [J]. International Journal of Impact Engineering, 2015, 79: 102–116. DOI: 10.1016/j.ijimpeng.2014.11.007.
    [15] LI J C, CHEN X W, HUANG F L. FEM analysis on the “self-sharpening” behavior of tungsten fiber/metallic glass matrix composite long rod [J]. International Journal of Impact Engineering, 2015, 86: 67–83. DOI: 10.1016/j.ijimpeng.2015.07.006.
    [16] LI J C, CHEN X W, HUANG F L. FEM analysis on the deformation and failure of fiber reinforced metallic glass matrix composite [J]. Materials Science and Engineering: A, 2016, 652: 145–166. DOI: 10.1016/j.msea.2015.11.051.
    [17] DU C, SHU D, DU Z, et al. Effect of L/D on penetration performance of tungsten fibre/Zr-based bulk metallic glass matrix composite rod [J]. International Journal of Refractory Metals and Hard Materials, 2019, 85: 105042. DOI: 10.1016/j.ijrmhm.2019.105042.
    [18] 杜成鑫. Wf/Zr基非晶复合材料杆弹准细观侵彻机理及优化设计 [D]. 南京: 南京理工大学, 2019.

    DU C X. Research on penetration mechanism and optimization design of Wf/Zr-based bulk metallic glass matrix composite rod [D]. Nanjing: Nanjing University of Science & Technology, 2019.
    [19] ZHOU F, DU C X, DU Z H, et al. Penetration gain study of a tungsten-fiber/Zr-based metallic glass matrix composite [J]. Crystals, 2022, 12(2): 284. DOI: 10.3390/cryst12020284.
    [20] ZHOU F, DU C X, CHENG C, et al. Penetration performance and fragmentation mechanism behind target of tungsten fibre/zirconium-based bulk metallic glass matrix composite rod [J]. International Journal of Refractory Metals and Hard Materials, 2023, 112: 106160. DOI: 10.1016/j.ijrmhm.2023.106160.
    [21] 吴烁罡, 杜成鑫, 周峰, 等. 钨丝/锆基非晶复合材料与93W合金弹芯侵彻靶板的损伤特征 [J]. 爆炸与冲击, 2024, 44(4): 043302. DOI: 10.11883/bzycj-2023-0312.

    WU S G, DU C X, ZHOU F, et al. Damage characteristic of target penetrated by WF/Zr-MG and 93W rods [J]. Explosion and Shock Waves, 2024, 44(4): 043302. DOI: 10.11883/bzycj-2023-0312.
    [22] LI J C, CHEN X W, HUANG F L. On the mechanical properties of particle reinforced metallic glass matrix composites [J]. Journal of Alloys and Compounds, 2018, 737: 271–294. DOI: 10.1016/j.jallcom.2017.12.024.
    [23] LI J C, CHEN X W, HUANG F L. Ballistic performance of tungsten particle/metallic glass matrix composite long rod [J]. Defence Technology, 2019, 15(2): 132–145. DOI: 10.1016/j.dt.2018.06.009.
    [24] 陈建良, 李继承. 钨纤维增强金属玻璃复合材料分段弹体侵彻性能研究 [J]. 爆炸与冲击, 2020, 40(6): 063201. DOI: 10.11883/bzycj-2019-0379.

    CHEN J L, LI J C. Ballistic behavior of tungsten fiber/metallic glass matrix composite segmented rods [J]. Explosion and Shock Waves, 2020, 40(6): 063201. DOI: 10.11883/bzycj-2019-0379.
    [25] LI J C, WEI Q, CHEN X W, et al. On the mechanism of deformation and failure in bulk metallic glasses [J]. Materials Science and Engineering: A, 2014, 610: 91–105. DOI: 10.1016/j.msea.2014.04.106.
    [26] LI J C, CHEN X W, HUANG F L. Inhomogeneous deformation in bulk metallic glasses: FEM analysis [J]. Materials Science and Engineering: A, 2015, 620: 333–351. DOI: 10.1016/j.msea.2014.10.013.
    [27] GOLDSMITH W. Non-ideal projectile impact on targets [J]. International Journal of Impact Engineering, 1999, 22(2/3): 95–395. DOI: 10.1016/S0734-743X(98)00031-1.
    [28] ANDERSON C E JR. Analytical models for penetration mechanics: a review [J]. International Journal of Impact Engineering, 2017, 108: 3–26. DOI: 10.1016/j.ijimpeng.2017.03.018.
    [29] ZHANG H F, LI H, WANG A M, et al. Synthesis and characteristics of 80 vol.% tungsten (W) fibre/Zr based metallic glass composite [J]. Intermetallics, 2009, 17(12): 1070–1077. DOI: 10.1016/j.intermet.2009.05.011.
    [30] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperature [C]//Proceedings of the seventh International Symposium on Ballistics. Hague: International Ballistics Committee, 1983: 541–547.
    [31] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [32] WANG L L, YANG L M, DONG X L, et al. Dynamics of materials: experiments, models and applications [M]. Amsterdam: Elsevier, 2019.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  22
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-27
  • 修回日期:  2024-07-18
  • 网络出版日期:  2024-07-19

目录

    /

    返回文章
    返回