• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

含甲基膦酸二甲酯的细水雾对氢-空气爆炸的影响机制

夏远辰 张彬 王博乔 叶刻 朱文斌 张斯琦 张金男

夏远辰, 张彬, 王博乔, 叶刻, 朱文斌, 张斯琦, 张金男. 含甲基膦酸二甲酯的细水雾对氢-空气爆炸的影响机制[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0145
引用本文: 夏远辰, 张彬, 王博乔, 叶刻, 朱文斌, 张斯琦, 张金男. 含甲基膦酸二甲酯的细水雾对氢-空气爆炸的影响机制[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0145
XIA Yuanchen, ZHANG Bin, WANG Boqiao, YE Ke, ZHU Wenbin, ZHANG Siqi, ZHANG Jinnan. Influence mechanism of water mist containing dimethyl methylphosphonate on hydrogen-air explosions[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0145
Citation: XIA Yuanchen, ZHANG Bin, WANG Boqiao, YE Ke, ZHU Wenbin, ZHANG Siqi, ZHANG Jinnan. Influence mechanism of water mist containing dimethyl methylphosphonate on hydrogen-air explosions[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0145

含甲基膦酸二甲酯的细水雾对氢-空气爆炸的影响机制

doi: 10.11883/bzycj-2025-0145
基金项目: 国家重点研发计划(2023YFB4301702);国家自然科学基金(51306026)
详细信息
    作者简介:

    夏远辰(1996- ),男,博士研究生,xyc_0121@dlmu.edu.cn

    通讯作者:

    张 彬(1982- ),男,博士,教授,zb_2010@dlmu.edu.cn

  • 中图分类号: O389; X932

Influence mechanism of water mist containing dimethyl methylphosphonate on hydrogen-air explosions

  • 摘要: 为有效控制受限空间氢-空气爆炸强度,并揭示含甲基膦酸二甲酯(dimethyl methylphosphonate, O=P(CH3)(OCH3)2)的微米级水雾的抑爆机理,通过定容燃烧弹试验平台及Chemkin-Pro程序,开展了试验研究和化学动力学分析。结果表明:含O=P(CH3)(OCH3)2的细水雾可导致火焰锋面细胞状结构增多,促使火焰失稳传播;当Φ=0.8, 1.0和1.5时,含O=P(CH3)(OCH3)2的细水雾有效衰减了平均火焰传播速度(衰减率为24.2%~47.2%)并阻止了郁金香火焰形成,取而代之的是波纹状火焰。含O=P(CH3)(OCH3)2的细水雾通过降低层流燃烧速度降低升压速率,另一方面增强火焰的失稳特性提高升压速率,最终抑制效果(衰减率为41.0%~65.8%)取决于上述2种作用的耦合效应。含的O=P(CH3)(OCH3)2的细水雾通过降低H∙、O∙和OH∙的浓度实现爆炸的有效抑制,其中H∙、O∙和OH∙的浓度衰减80%以上。细水雾基于火焰前沿冷却效应和物理稀释效应实现爆炸抑制,O=P(CH3)(OCH3)2基于分解后产生的HOPO∙、HOPO2∙、HPO2∙、PO(OH)2∙和PO(H)(OH)∙,捕捉H∙和OH∙,生成H2和H2O等稳定化合物,从而中断氢-空气爆炸过程中的链式反应。
  • 图  1  试验系统示意图

    Figure  1.  Schematic diagram of the experimental system

    图  2  细水雾直径的微分分布

    Figure  2.  Differential distribution of fine water mist diameter

    图  3  耦合机制的层流燃烧速度有效性验证

    Figure  3.  Validation of coupling mechanismfor laminar burning velocity

    图  4  氢-空气火焰锋面演化过程

    Figure  4.  Evolution of hydrogen-air flame front

    图  5  含甲基膦酸二甲酯的细水雾对氢-空气火焰锋面演化的影响

    Figure  5.  Effect of water mist containing dimethyl methylphosphonate on the evolution of hydrogen-air flame front

    图  6  含甲基膦酸二甲酯的细水雾对氢-空气火焰胞状不稳定性的影响

    Figure  6.  Effect of water mist containing dimethyl methylphosphonate on cell instability of hydrogen-air flame

    图  7  含甲基膦酸二甲酯的细水雾对氢-空气平均火焰传播速度的影响

    Figure  7.  Effect of water mist containing dimethyl methylphosphonate on hydrogen-air flame front propagation speed

    图  8  含甲基膦酸二甲酯的细水雾作用下氢-空气爆炸压力演化

    Figure  8.  Evolution of hydrogen-air explosion overpressure under the action of water mist containing O=P(CH3)(OCH3)2

    图  9  含甲基膦酸二甲酯的细水雾作用下氢-空气爆炸平均压力上升速率

    Figure  9.  Average overpressure rise rate of hydrogen-air explosions under the action of water mist containing O=P(CH3)(OCH3)2

    图  10  含O=P(CH3)(OCH3)2的细水雾与氢-空气混合物燃烧过程中自由基浓度的分布

    Figure  10.  Distribution of free radical concentration during combustion of water mist containing O=P(CH3)(OCH3)2 and hydrogen-air mixture

    图  11  含磷活性基团作用于氢燃烧过程的反应路径

    Figure  11.  Reaction path between the interaction of phosphorus-containing active groups on hydrogen combustion process

  • [1] GUO Q, LIU J, LIANG W K, et al. On the explosion characteristics of natural gas with hydrogen and inert gas additions [J]. Process Safety and Environmental Protection, 2023, 179: 700–713. DOI: 10.1016/j.psep.2023.09.056.
    [2] WEI R C, LAN J M, LIAN L P, et al. A bibliometric study on research trends in hydrogen safety [J]. Process Safety and Environmental Protection, 2022, 159: 1064–1081. DOI: 10.1016/j.psep.2022.01.078.
    [3] XIA Y C, ZHANG B, WANG B Q, et al. Study on flame evolution and kinetics mechanism of H2-Air mixture with C3H9O3P-H2O fog addition [J]. Fuel, 2025, 395: 135017. DOI: 10.1016/j.fuel.2025.135017.
    [4] ZHANG C, SHEN X B, WEN J X, et al. The behavior of methane/hydrogen/air premixed flame in a closed channel with inhibition [J]. Fuel, 2020, 265: 116810. DOI: 10.1016/j.fuel.2019.116810.
    [5] CAO X Y, WANG Z, WANG Z R, et al. Experimental research on the flame resistance characteristics of wire mesh for syngas explosion [J]. Process Safety and Environmental Protection, 2023, 175: 34–47. DOI: 10.1016/j.psep.2023.05.023.
    [6] QIU D Y, CHEN X F, HAO L J, et al. Partial suppression of acetaminophen dust explosion by synergistic multiphase inhibitors [J]. Process Safety and Environmental Protection, 2023, 172: 262–272. DOI: 10.1016/j.psep.2023.02.021.
    [7] CUI Y, LIU J H. Research progress of water mist fire extinguishing technology and its application in battery fires [J]. Process Safety and Environmental Protection, 2021, 149: 559–574. DOI: 10.1016/j.psep.2021.03.003.
    [8] CAO X Y, ZHOU Y Q, WANG Z R, et al. Experimental research on hydrogen/air explosion inhibition by the ultrafine water mist [J]. International Journal of Hydrogen Energy, 2022, 47(56): 23898–23908. DOI: 10.1016/j.ijhydene.2022.05.165.
    [9] BOECK L R, KINK A, OEZDIN D, et al. Influence of water mist on flame acceleration, DDT and detonation in H2-air mixtures [J]. International Journal of Hydrogen Energy, 2015, 40(21): 6995–7004. DOI: 10.1016/j.ijhydene.2015.03.129.
    [10] XIA Y C, ZHANG J N, ZHANG B, et al. Localized water mist method enabling superior premixed hydrogen-methane-air deflagration mitigation in semi-confined space [J]. International Journal of Hydrogen Energy, 2024, 50: 1458–1469. DOI: 10.1016/j.ijhydene.2023.11.129.
    [11] WEI S M, YU M G, PEI B, et al. Experimental and numerical study on the explosion suppression of hydrogen/dimethyl ether/methane/air mixtures by water mist containing NaHCO3 [J]. Fuel, 2022, 328: 125235. DOI: 10.1016/j.fuel.2022.125235.
    [12] 陈晓坤, 王君, 程方明. 氢气抑爆材料及其抑爆机理研究进展 [J]. 爆炸与冲击, 2024, 44(11): 111101. DOI: 10.11883/bzycj-2023-0418.

    CHEN X K, WANG J, CHENG F M. Research progress on hydrogen gas explosion suppression materials and their suppression mechanisms [J]. Explosion and Shock Waves, 2024, 44(11): 111101. DOI: 10.11883/bzycj-2023-0418.
    [13] CAO X Y, REN J J, ZHOU Y H, et al. Suppression of methane/air explosion by ultrafine water mist containing sodium chloride additive [J]. Journal of Hazardous Materials, 2015, 285: 311–318. DOI: 10.1016/j.jhazmat.2014.11.016.
    [14] 裴蓓, 胡紫维, 韩谕良, 等. 含改性氯化合物对N2/细水雾抑制LPG爆炸影响研究 [J]. 爆炸与冲击, 2024, 44(11): 115401. DOI: 10.11883/bzycj-2023-0340.

    PEI B, HU Z W, HAN Y L, et al. Study on influence of modified chlorine-containing compounds on N2/water mist to suppress LPG explosion [J]. Explosion and Shock Waves, 2024, 44(11): 115401. DOI: 10.11883/bzycj-2023-0340.
    [15] YU M G, WAN S J, XU Y L, et al. Suppressing methane explosion overpressure using a charged water mist containing a NaCl additive [J]. Journal of Natural Gas Science and Engineering, 2016, 29: 21–29. DOI: 10.1016/j.jngse.2015.12.040.
    [16] WANG F X, JIA J Z, TIAN X Y. Study on methane explosion suppression in diagonal pipe networks using a fine water mist containing KCl and an inert gas [J]. ACS Omega, 2022, 7(37): 32959–32969. DOI: 10.1021/acsomega.2c02212.
    [17] JOSEPH P, NICHOLS E, NOVOZHILOV V. A comparative study of the effects of chemical additives on the suppression efficiency of water mist [J]. Fire Safety Journal, 2013, 58: 221–225. DOI: 10.1016/j.firesaf.2013.03.003.
    [18] ZHANG T W, LIU H, HAN Z Y, et al. Active substances study in fire extinguishing by water mist with potassium salt additives based on thermoanalysis and thermodynamics [J]. Applied Thermal Engineering, 2017, 122: 429–438. DOI: 10.1016/j.applthermaleng.2017.05.053.
    [19] PEI B, LI S L, YANG S J, et al. Flame propagation inhibition study on methane/air explosion using CO2 twin-fluid water mist containing potassium salt additives [J]. Journal of Loss Prevention in the Process Industries, 2022, 78: 104817. DOI: 10.1016/j.jlp.2022.104817.
    [20] SHI L, MENG X B, WU Y, et al. Numerical simulation study of the mechanism of hydrogen explosion inhibition by fine water mist containing NaOH [J]. Powder Technology, 2024, 432: 119166. DOI: 10.1016/j.powtec.2023.119166.
    [21] INGRAM J M, AVERILL A F, BATTERSBY P, et al. Suppression of hydrogen/oxygen/nitrogen explosions by fine water mist containing sodium hydroxide additive [J]. International Journal of Hydrogen Energy, 2013, 38(19): 8002–8010. DOI: 10.1016/j.ijhydene.2013.04.048.
    [22] VAN DER VEEN I, DE BOER J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis [J]. Chemosphere, 2012, 88(10): 1119–1153. DOI: 10.1016/j.chemosphere.2012.03.067.
    [23] WANG Z R, XU H, LU Y W, et al. Experimental and theoretical study on the suppression effect of water mist containing dimethyl methylphosphonate (DMMP) on hydrogen jet flame [J]. Fuel, 2023, 331: 125813. DOI: 10.1016/j.fuel.2022.125813.
    [24] JIANG H P, BI M S, HUANG L, et al. Suppression mechanism of ultrafine water mist containing phosphorus compounds in methane/coal dust explosions [J]. Energy, 2022, 239: 121987. DOI: 10.1016/j.energy.2021.121987.
    [25] National Fire Protection Association. Standard on water mist fire protection systems: NFPA 750 [S]. Quincy: National Fire Protection Association, 2019.
    [26] CONAIRE M Ó, CURRAN H J, SIMMIE J M, et al. A comprehensive modeling study of hydrogen oxidation [J]. International Journal of Chemical Kinetics, 2004, 36(11): 603–622. DOI: 10.1002/kin.20036.
    [27] JAYAWEERA T M, MELIUS C F, PITZ W J, et al. Flame inhibition by phosphorus-containing compounds over a range of equivalence ratios [J]. Combustion and Flame, 2005, 140(1/2): 103–115. DOI: 10.1016/j.combustflame.2004.11.001.
    [28] OTOMO J, KOSHI M, MITSUMORI T, et al. Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion [J]. International Journal of Hydrogen Energy, 2018, 43(5): 3004–3014. DOI: 10.1016/j.ijhydene.2017.12.066.
    [29] JING Y X, CUI J T, LIU B Z, et al. Pyrolysis and kinetic study of dimethyl methylphosphonate (DMMP) by synchrotron photoionization mass spectrometry [J]. Combustion and Flame, 2023, 255: 112919. DOI: 10.1016/j.combustflame.2023.112919.
    [30] SIKES T, MATHIEU O, KULATILAKA W D, et al. Laminar flame speeds of DEMP, DMMP, and TEP added to H2- and CH4-air mixtures [J]. Proceedings of the Combustion Institute, 2019, 37(3): 3775–3781. DOI: 10.1016/j.proci.2018.05.042.
    [31] DAHOE A E. Laminar burning velocities of hydrogen-air mixtures from closed vessel gas explosions [J]. Journal of Loss Prevention in the Process Industries, 2005, 18(3): 152–166. DOI: 10.1016/j.jlp.2005.03.007.
    [32] 李艳超. 氢气火焰失稳传播与爆炸压力的耦合影响机制研究 [D]. 大连: 大连理工大学, 2019: 91–94. DOI: 10.26991/d.cnki.gdllu.2019.003558.

    LI Y C. Dynamic couplings of unstable hydrogen flame propagation and explosion pressure evolution [D]. Dalian: Dalian University of Technology, 2019: 91–94. DOI: 10.26991/d.cnki.gdllu.2019.003558.
    [33] 夏远辰. 细水雾对氢燃料动力船舶机舱爆燃事故抑制机理研究 [D]. 大连: 大连海事大学, 2023: 52–54. DOI: 10.26989/d.cnki.gdlhu.2023.000803.

    XIA Y C. Research on inhibition mechanism of water fog on deflagration accident in engine room of hydrogen-powered ship [D]. Dalian: Dalian Maritime University, 2023: 52–54. DOI: 10.26989/d.cnki.gdlhu.2023.000803.
  • 加载中
图(11)
计量
  • 文章访问数:  234
  • HTML全文浏览量:  51
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-19
  • 修回日期:  2025-08-09
  • 网络出版日期:  2025-08-12

目录

    /

    返回文章
    返回