• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

增强内凹蜂窝夹层结构弯曲力学性能及多目标优化设计

邹震 徐峰祥 方腾源 谢冲 周谦谋

邹震, 徐峰祥, 方腾源, 谢冲, 周谦谋. 增强内凹蜂窝夹层结构弯曲力学性能及多目标优化设计[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0164
引用本文: 邹震, 徐峰祥, 方腾源, 谢冲, 周谦谋. 增强内凹蜂窝夹层结构弯曲力学性能及多目标优化设计[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0164
ZOU Zhen, XU Fengxiang, FANG Tengyuan, XIE Chong, ZHOU Qianmou. Mechanical properties and multi-objective optimization of reinforced re-entrant honeycomb sandwich structures under bending load[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0164
Citation: ZOU Zhen, XU Fengxiang, FANG Tengyuan, XIE Chong, ZHOU Qianmou. Mechanical properties and multi-objective optimization of reinforced re-entrant honeycomb sandwich structures under bending load[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0164

增强内凹蜂窝夹层结构弯曲力学性能及多目标优化设计

doi: 10.11883/bzycj-2025-0164
基金项目: 国家自然科学基金(52475277);湖南大学整车先进设计制造技术全国重点实验室开放基金(32415009)
详细信息
    作者简介:

    邹 震(1995- ),男,博士,讲师,zhenzou821@163.com

    通讯作者:

    徐峰祥(1985- ),男,博士,副教授,xufx@whut.edu.cn

  • 中图分类号: O347

Mechanical properties and multi-objective optimization of reinforced re-entrant honeycomb sandwich structures under bending load

  • 摘要: 内凹蜂窝的悬链线增强方法通过同步改善中空结构提升承载、增强负泊松比效应、改善变形模式、利用悬链线结构高承载实现耐撞性的显著提升,在此基础上提出增强内凹蜂窝夹层梁。采用“冲压+粘接”方法分别制造传统、增强内凹蜂窝夹层梁金属样件开展三点弯曲实验,结果显示:悬链线结构通过抑制传统内凹蜂窝侧胞壁绕节点的旋转变形将其初始塑性变形后承载力的下降比例由29.3%减小至6.6%。相较于传统内凹蜂窝夹层梁,等相对密度增强内凹蜂窝夹层梁的最大承载力、能量吸收分别提高26.7%、8.9%。开展参数化研究确定面板、芯层壁厚对夹层梁三点弯曲力学行为均具有显著影响。基于参数化研究结果开展以面板、芯层壁厚为变量的夹层梁抗冲击性能多目标优化,相较于夹层梁初始结构,优化后夹层梁最大承载力和能量吸收分别提高64.9%和46.9%。与面内、面外传统蜂窝夹层梁分别进行等壁厚、等质量下的抗冲击性能对比,证明提出增强内凹蜂窝夹层梁更优异的吸能防护性能。研究结果可为传统蜂窝夹层结构的强化设计提供有益指导。
  • 图  1  RRH及其夹层梁的构建

    Figure  1.  The construction of RRH and sandwich beam

    图  2  RRH制造方法及样件胞元壁厚分布

    Figure  2.  The fabrication of RRH and thickness distribution of units

    图  3  夹层梁装配、固化及样件

    Figure  3.  The assembly method and curing process of RRH sandwich cored beam and its specimens

    图  4  准静态单轴拉伸实验

    Figure  4.  Quasi-static uniaxial tensile experiment

    图  5  准静态三点弯曲实验及其耐撞性评估指标

    Figure  5.  Quasi-static three-point bending test and the evaluation indicators of crashworthiness

    图  6  RH及RRH夹层梁三点弯曲实验结果

    Figure  6.  Test results of three-point bending of RH and RRH cored sandwich beams

    图  7  数值模型及网格收敛性分析

    Figure  7.  Numerical model and mesh convergence analysis

    图  8  数值模型验证

    Figure  8.  Verification of numerical model

    图  9  不同前面板壁厚RRH夹层梁的变形模式与力学特性

    Figure  9.  Deformation mode and mechanical properties of RRH cored beam with different front facesheet thicknesses

    图  10  不同后面板壁厚RRH夹层梁的变形模式与力学特性

    Figure  10.  Deformation mode and mechanical properties of RRH cored beam with different back facesheet thicknesses

    图  11  不同芯层壁厚RRH夹层梁的变形模式与力学特性

    Figure  11.  Deformation mode and mechanical properties of RRH cored beam with different core thicknesses

    图  12  RRH夹层梁的多目标优化总体流程。

    Figure  12.  Workflow for multi-objective optimization of RRH cored beam

    图  13  样本点的空间分布

    Figure  13.  Space distribution of sample points selected

    图  14  Kriging代理模型的预测精度

    Figure  14.  Prediction accuracy of Kriging surrogate model

    图  15  面外传统蜂窝、面内传统蜂窝与RRH夹层梁耐撞性对比

    Figure  15.  Comparison of the crashworthiness between in-plane and out-of-plane conventional honeycomb and RRH cored beams

    表  1  部分样本点

    Table  1.   Partial sample points

    序号 tf/mm tb/mm tc/mm m/g Ea/J Fm/N
    1 1.513 1.154 0.172 100.9 13.9 470.0
    2 2.282 2.333 0.146 115.3 14.1 540.0
    3 1.923 3.000 0.121 119.1 12.6 489.0
    38 2.487 1.718 0.127 227.4 36.4 769.0
    39 1.615 2.538 0.056 235.0 31.4 770.5
    40 2.436 2.077 0.294 256.4 33.6 723.0
    下载: 导出CSV

    表  2  部分优化解(从Pareto解集中选择)和相关设计变量

    Table  2.   Partial optimal solution selected from Pareto solution set and related design variable

    No.tf/mmtc/mmtb/mmm/gEa/JFm/N
    02.000.052.00149.3211.12494.35
    10.910.241.53149.3218.27730.04
    20.910.241.53149.3918.29730.50
    30.910.251.64153.2319.36742.53
    40.910.251.64153.2419.36742.58
    50.890.251.54152.1918.79743.51
    60.900.251.55152.1118.78743.88
    70.910.251.55152.1418.76744.16
    80.910.251.56152.2918.81744.86
    90.920.251.56152.3718.77745.57
    100.920.251.56152.3818.77745.61
    110.930.251.56152.3918.76745.74
    120.930.251.55152.5918.78746.58
    130.930.251.58153.1518.96748.61
    下载: 导出CSV

    表  3  优化结果验证与优化前后对比

    Table  3.   Verification of optimal solution and before and after comparison of optimization

    No.m/g响应Ea/JFm/N
    0153.30初始值11.12494.35
    4153.24优化值19.36742.53
    有限元解18.84726.31
    13153.15优化值18.96748.61
    有限元解18.13719.35
    下载: 导出CSV
  • [1] GUO H Y, ZHANG J X. Performance-oriented and deformation-constrained dual-topology metamaterial with high-stress uniformity and extraordinary plastic property [J]. Advanced Materials, 2025, 37(7): 2412064. DOI: 10.1002/adma.202412064.
    [2] PALOMBA G, EPASTO G, CRUPI V. Lightweight sandwich structures for marine applications: a review [J]. Mechanics of Advanced Materials and Structures, 2022, 29(26): 4839–4864. DOI: 10.1080/15376494.2021.1941448.
    [3] GUO H Y, YUAN H, ZHANG J X, et al. Review of sandwich structures under impact loadings: experimental, numerical and theoretical analysis [J]. Thin-Walled Structures, 2024, 196: 111541. DOI: 10.1016/j.tws.2023.111541.
    [4] WU X W, GUO H Y, ZHANG J X. Bi-surface induction in biomimetic multi-gradient foam-filled tubes with enhanced energy absorption: theory, experiment, and simulation [J]. Journal of Applied Mechanics, 2025, 92(5): 051010. DOI: 10.1115/1.4068061.
    [5] 余同希, 朱凌, 许骏. 结构冲击动力学进展(2010-2020) [J]. 爆炸与冲击, 2021, 41(12): 121401. DOI: 10.11883/bzycj-2021-0113.

    YU T X, ZHU L, XU J. Progress in structural impact dynamics during 2010-2020 [J]. Explosion and Shock Waves, 2021, 41(12): 121401. DOI: 10.11883/bzycj-2021-0113.
    [6] 周睿, 岳增申, 徐轩, 等. 多级金属波纹夹层结构的抗强动冲击特性 [J]. 爆炸与冲击, 2024, 44(11): 113102. DOI: 10.11883/bzycj-2023-0296.

    ZHOU R, YUE Z S, XU X, et al. Dynamic responses of metallic hierarchical corrugated sandwich beams under shock loadings [J]. Explosion and Shock Waves, 2024, 44(11): 113102. DOI: 10.11883/bzycj-2023-0296.
    [7] 黄治镡, 何成龙, 王玉浩, 等. 铝/CFRP面板蜂窝夹层结构低速冲击特性 [J/OL]. 复合材料学报, (2025-02-24)[2025-06-04]. https://doi.org/ 10.13801/j.cnki.fhclxb.20250224.001. DOI: 10.13801/j.cnki.fhclxb.20250224.001.

    HUANG Z T, HE C L, WANG Y H, et al. Low-velocity characteristics of honeycomb sandwich structure with Al/CFRP face-sheets [J/OL]. Acta Materiae Compositae Sinica, (2025-02-24)[2025-06-04]. https://doi.org/ 10.13801/j.cnki.fhclxb.20250224.001. DOI: 10.13801/j.cnki.fhclxb.20250224.001.
    [8] YUAN G, HUANG H W. Energy absorption characteristics and optimization of three-beam star honeycomb [J]. Mechanics of Advanced Materials and Structures, 2023, 30(8): 1559–1573. DOI: 10.1080/15376494.2022.2037171.
    [9] NAJAFI M, AHMADI H, LIAGHAT G. Investigation on the flexural properties of sandwich beams with auxetic core [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44(2): 61. DOI: 10.1007/s40430-022-03368-3.
    [10] ZHANG W, YIN S, YU T X, et al. Crushing resistance and energy absorption of pomelo peel inspired hierarchical honeycomb [J]. International Journal of Impact Engineering, 2019, 125: 163–172. DOI: 10.1016/j.ijimpeng.2018.11.014.
    [11] YOU J F, ZHANG H C, ZHU H X, et al. The high strain compression of micro- and nano-sized random irregular honeycombs [J]. Materials Research Express, 2016, 3(9): 095023. DOI: 10.1088/2053-1591/3/9/095023.
    [12] LV H Y, SHI S S, CHEN B Z, et al. Low-velocity impact response of composite sandwich structure with grid-honeycomb hybrid core [J]. International Journal of Mechanical Sciences, 2023, 246: 108149. DOI: 10.1016/j.ijmecsci.2023.108149.
    [13] 袁敏, 徐峰祥, 龚铭远. 梯度厚度负泊松比蜂窝材料面内冲击特性 [J]. 塑性工程学报, 2021, 28(6): 192–199. DOI: 10.3969/j.issn.1007-2012.2021.06.025.

    YUAN M, XU F X, GONG M Y. In-plane impact performance of honeycomb material with gradient thickness and negative Poisson’s ratio [J]. Journal of Plasticity Engineering, 2021, 28(6): 192–199. DOI: 10.3969/j.issn.1007-2012.2021.06.025.
    [14] 蒋舟顺, 徐峰祥, 邹震, 等. 爆炸载荷下正弦曲边三维负泊松比夹芯板的动态响应和吸能特性 [J]. 爆炸与冲击, 2024, 44(2): 021001. DOI: 10.11883/bzycj-2023-0214.

    JIANG Z S, XU F X, ZOU Z, et al. Dynamic response and energy absorption properties of sinusoidally curved three-dimensional negative Poissonʼs ratio sandwich panels subjected to blast loading [J]. Explosion and Shock Waves, 2024, 44(2): 021001. DOI: 10.11883/bzycj-2023-0214.
    [15] JEONG S, YOO H H. Shape optimization of bowtie-shaped auxetic structures using beam theory [J]. Composite Structures, 2019, 224: 111020. DOI: 10.1016/j.compstruct.2019.111020.
    [16] LU Z X, LI X, YANG Z Y, et al. Novel structure with negative Poisson's ratio and enhanced Young’s modulus [J]. Composite Structures, 2016, 138: 243–252. DOI: 10.1016/j.compstruct.2015.11.036.
    [17] ZOU Z, XU F X, NIU X Q, et al. In-plane crashing behavior and energy absorption of re-entrant honeycomb reinforced by arched ribs [J]. Composite Structures, 2023, 325: 117615. DOI: 10.1016/j.compstruct.2023.117615.
    [18] ZOU Z, XU F X, NIU X Q, et al. In-plane crashing behavior and energy absorption of graded re-entrant honeycombs reinforced by catenary [J]. Thin-Walled Structures, 2024, 203: 112253. DOI: 10.1016/j.tws.2024.112253.
    [19] ZOU Z, REID S R, TAN P J, et al. Dynamic crushing of honeycombs and features of shock fronts [J]. International Journal of Impact Engineering, 2009, 36(1): 165–176. DOI: 10.1016/j.ijimpeng.2007.11.008.
    [20] SANTOSA S P, WIERZBICKI T, HANSSEN A G, et al. Experimental and numerical studies of foam-filled sections [J]. International Journal of Impact Engineering, 2000, 24(5): 509–534. DOI: 10.1016/S0734-743X(99)00036-6.
    [21] 余同希, 卢国兴, 张雄. 能量吸收: 结构与材料的力学行为和塑性分析 [M]. 北京: 科学出版社, 2019: 2–17.
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  350
  • HTML全文浏览量:  40
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-04
  • 修回日期:  2025-07-04
  • 网络出版日期:  2025-07-07

目录

    /

    返回文章
    返回