• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

基于XGBoost的PC板爆炸损伤评估模型

赵春风 吴艺秀 向思麒 李晓杰

赵春风, 吴艺秀, 向思麒, 李晓杰. 基于XGBoost的PC板爆炸损伤评估模型[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0250
引用本文: 赵春风, 吴艺秀, 向思麒, 李晓杰. 基于XGBoost的PC板爆炸损伤评估模型[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0250
ZHAO Chunfeng, WU Yixiu, XIANG Siqi, LI Xiaojie. Blast damage assessment model of PC slabs based on XGBoost[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0250
Citation: ZHAO Chunfeng, WU Yixiu, XIANG Siqi, LI Xiaojie. Blast damage assessment model of PC slabs based on XGBoost[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0250

基于XGBoost的PC板爆炸损伤评估模型

doi: 10.11883/bzycj-2025-0250
基金项目: 新疆维吾尔自治区自然科学重点基金(2022D01D33);工业装备结构分析优化与CAE软件全国重点实验室开放基金项目(GZ24120)
详细信息
    作者简介:

    赵春风(1983- ),男,博士,教授,Zhaowindy@hfut.edu.cn

  • 中图分类号: T

Blast damage assessment model of PC slabs based on XGBoost

  • 摘要: 装配式建筑结构因其节能环保、质量可控及施工高效快捷等优点,在土木工程中得到了广泛应用。作为装配式建筑结构的核心受力构件,预制钢筋混凝土(precast reinforced concrete,PC)板易受燃气爆炸、工业爆炸和恐怖袭击等威胁。为了准确评估PC板在爆炸作用下的损伤状态,提升结构抗爆能力,并降低人员伤亡风险,通过构建PC板爆炸响应数据集,选取6项几何结构参数和2项爆炸荷载参数作为输入特征,采用3种不同的机器学习算法(GPR、RF和XGBoost)对PC板的最大位移进行预测,采用均方根误差、决定系数、平均绝对误差、散射系数及综合性能目标函数值5项回归评价指标,对3种模型的预测精度进行对比分析;提出了基于支座转角损伤准则的损伤分类评估模型,利用混淆矩阵和5项分类指标(准确率、精确率、召回率、F1分数和Kappa系数)分析3种准则下模型的性能差异,并与简化后的模型及经验预测方法进行对比。结果表明:在最大位移预测方面,3种机器学习模型中表现最佳的为XGBoost模型,其拟合性优于GPR和RF模型且综合性能最优;在损伤分类预测方面,基于准则Ⅱ的XGBoost损伤分类模型性能最优,损伤识别准确率达92.5%,显示出其高效的损伤类型识别能力。基于XGBoost算法的爆炸作用下PC板损伤分类评估模型具有强大的性能,对结构抗爆和爆后快速损伤评定具有参考价值。
  • 图  1  基于XGBoost的PC板爆炸作用下损伤评估模型流程图

    Figure  1.  Flow chart of damage assessment model under explosion on PC board based on XGBoost

    图  2  不同算法示意图

    Figure  2.  Schematic diagrams of different algorithm

    图  3  3种模型实际值与预测值之间比较

    Figure  3.  Comparison of actual and predicted values among three models

    图  4  3种模型的预测性能与残差对比

    Figure  4.  Comparison of predictive performance and residuals among three models

    图  5  基于XGBoost模型的SHAP均值特征重要性分析

    Figure  5.  Analyses of SHAP mean value and feature importance based on XGBoost model

    图  6  PC板爆炸作用下的支座转角示意图

    Figure  6.  Schematic diagram of support rotation in PC slab under blast loading

    图  7  混淆矩阵示意图

    Figure  7.  Confusion matrix diagram

    图  8  3种损伤评估准则的模型预测结果

    Figure  8.  Model prediction results of three damage criteria

    图  9  基于3种损伤评估准则的混淆矩阵

    Figure  9.  Confusion matrix based on three damage criteria

    图  10  SMOTE和粒子群优化算法示意图

    Figure  10.  Schematic diagrams of SMOTE and PSO algorithm

    图  11  损伤评估简化模型流程图

    Figure  11.  Flow chart of damage assessment simplified model

    图  12  简化模型损伤评估数据集测试集混淆矩阵

    Figure  12.  Test set confusion matrix for damage assessment database of simplified model

    图  13  简化模型混合数据集测试集混淆矩阵

    Figure  13.  Test set confusion matrix for hybrid database of simplified model

    图  14  3种模型测试集混淆矩阵

    Figure  14.  Test set confusion matrix of three models

    图  15  基于经验预测方法的结果

    Figure  15.  Results based on empirical prediction methods

    表  1  本研究数值来源及类型

    Table  1.   Data source and type of this study

    作者数据类型数量增扩数据
    Zhao[13]模拟14137
    杜永峰[14]模拟646
    周兆鹏[15]试验336
    Tian[16]试验369
    董刚[17]模拟646
    李建武[18]模拟14125
    Choi[19]试验+模拟1+1080
    Wang[20]试验+模拟578
    下载: 导出CSV

    表  2  位移预测数据集参数范围

    Table  2.   Parameter range of displacement prediction database

    数据l/mb/mD/mfc/MPafv/MPaρ/%R/mW/kgd/mm
    平均值2.3201.5770.15840.025417.1790.4741.0193.06421.126
    范围1.3~41~3.10.07~0.320~80235~6000.15~1.770.01~2.10.05~100.44~137
    下载: 导出CSV

    表  3  损伤程度预测数据集参数范围

    Table  3.   Parameter range of damage assessment database

    数据l/mb/mD/mfc/MPafv/MPaρ/%R/mW/kg
    平均值2.631.860.1746.5458.330.421.384.55
    范围1.4~41~3.10.08~0.330~70300~6000.17~1.130.5~2.10.5~12.5
    下载: 导出CSV

    表  4  3种模型性能的回归评价指标

    Table  4.   Regression evaluation indicators for the performance of three models

    模型数据集形式R2σRMSE/mmσMAE/mmξfOBJ
    GPR训练集0.9941.3570.5830.0641.325
    测试集0.9653.0252.3500.143
    RF训练集0.9722.5700.7030.1212.330
    测试集0.8915.6593.8370.268
    XGBoost训练集0.9980.8630.2050.0410.939
    测试集0.9752.8742.1850.136
    下载: 导出CSV

    表  5  基于支座转角的损伤评估划分

    Table  5.   Damage assessment division based on support rotation

    损伤程度准则Ⅰ[28]准则Ⅱ[29]准则Ⅲ[30]
    轻度损伤θ≤1.7°θ≤2°θ≤2°
    中度损伤1.7°<θ≤4.6°2°<θ≤5°2°<θ≤6°
    严重损伤4.6°<θ≤6.8°5°<θ≤10°6°<θ≤12°
    倒塌破坏θ>6.8°θ>10°θ>12°
    下载: 导出CSV

    表  6  Kappa系数值的含义

    Table  6.   Meaning of Kappa coefficient values

    Kappa系数一致性强度
    <0.20较差
    0.21-0.40一般
    0.41-0.60中等
    0.61-0.80较强
    0.81-1.0
    下载: 导出CSV

    表  7  基于3种损伤准则模型的分类指标

    Table  7.   Classification indicators based on three damage models

    准则Acc/%P/%Rc/%F1Ka
    59.1760.7048.200.540.331
    95.0092.9290.100.920.925
    74.1776.5171.650.740.625
    下载: 导出CSV

    表  8  基于损伤评估数据集的简化模型分类指标

    Table  8.   Classification index of simplified model based on damage assessment database

    Acc/%P/%Rc/%F1Ka
    90.9191.2390.840.910.878
    下载: 导出CSV

    表  9  基于混合数据集的简化模型分类指标

    Table  9.   Classification index for simplified models based on hybrid databases

    Acc/%P/%Rc/%F1Ka
    91.4891.0592.390.9170.889
    下载: 导出CSV

    表  10  基于XGBoost的损伤评估模型和简化模型综合对比

    Table  10.   Comprehensive comparison between XGBoost model and simplified model

    模型准确率/%平均计算耗时/min物理逻辑可解释性
    基于XGBoost的损伤评估模型95.02.1位移预测+损伤评估强(分步解释响应与损伤)
    简化模型91.51.3直接损伤评估分类较弱(黑箱特征明显)
    下载: 导出CSV

    表  11  对比经验预测方法的样本数据点

    Table  11.   Sample data points for comparing empirical prediction methods

    序号 板厚度/
    m
    爆炸距离/
    m
    TNT当量/
    kg
    比例距离/
    (m·kg−1/3)
    比例厚度/
    (m·kg−1/3)
    实际
    损伤
    分类
    预测
    1 0.14 0.5 1.8 0.41 0.96 倒塌 倒塌
    2 0.14 0.5 1.4 0.45 0.96 倒塌 倒塌
    3 0.14 0.5 0.9 0.52 0.96 严重 严重
    4 0.14 0.5 0.6 0.59 0.96 严重 严重
    5 0.22 0.6 1.8 0.49 0.99 倒塌 倒塌
    6 0.22 0.6 1.3 0.55 0.99 中度 中度
    7 0.22 0.6 0.9 0.62 0.99 轻度 中度
    下载: 导出CSV
  • [1] YE X, ZHAO C F, HE K C, et al. Blast behaviors of precast concrete sandwich EPS panels: FEM and theoretical analysis [J]. Engineering Structures, 2021, 226: 111345. DOI: 10.1016/j.engstruct.2020.111345.
    [2] ZHAO C F, YE X, HE K C, et al. Numerical study and theoretical analysis on blast resistance of fabricated concrete slab [J]. Journal of Building Engineering, 2020, 32: 101760. DOI: 10.1016/j.jobe.2020.101760.
    [3] 李圣童, 汪维, 梁仕发, 等. 长持时爆炸冲击波荷载作用下梁板组合结构的动力响应 [J]. 爆炸与冲击, 2022, 42(7): 075103. DOI: 10.11883/bzycj-2021-0495.

    LI S T, WANG W, LIANG S F, et al. Dynamic response of beam-slab composite structures under long-lasting explosion shock wave load [J]. Explosion and Shock Waves, 2022, 42(7): 075103. DOI: 10.11883/bzycj-2021-0495.
    [4] NORRIS C H. Structural design for dynamic loads [M]. New York: McGraw-Hill, 1959.
    [5] 苏琼, 程月华, 吴昊. 爆炸荷载作用下UHPC板的弯曲损伤评估 [J]. 爆炸与冲击, 2023, 43(12): 125103. DOI: 10.11883/bzycj-2023-0160.

    SU Q, CHENG Y H, WU H. Flexural damage assessment for UHPC panels under blast loadings [J]. Explosion and Shock Waves, 2023, 43(12): 125103. DOI: 10.11883/bzycj-2023-0160.
    [6] LI Q M, MENG H. Pressure-impulse diagram for blast loads based on dimensional analysis and single-degree-of-freedom model [J]. Journal of Engineering Mechanics, 2002, 128(1): 87–92. DOI: 10.1061/(ASCE)0733-9399(2002)128:1(87).
    [7] WANG W, ZHANG D, LU F Y, et al. Pressure-impulse diagram with multiple failure modes of one-way reinforced concrete slab under blast loading using SDOF method [J]. Journal of Central South University, 2013, 20(2): 510–519. DOI: 10.1007/s11771-013-1513-z.
    [8] PARK G K, KWAK H G, FILIPPOU F C. Evaluation of nonlinear behavior and resisting capacity of reinforced concrete columns subjected to blast loads [J]. Engineering Failure Analysis, 2018, 93: 268–288. DOI: 10.1016/j.engfailanal.2018.07.024.
    [9] NADERPOUR H, MIRRASHID M, PARSA P. Failure mode prediction of reinforced concrete columns using machine learning methods [J]. Engineering Structures, 2021, 248: 113263. DOI: 10.1016/j.engstruct.2021.113263.
    [10] SANDEEP M S, TIPRAK K, KAEWUNRUEN S, et al. Shear strength prediction of reinforced concrete beams using machine learning [J]. Structures, 2023, 47: 1196–1211. DOI: 10.1016/j.istruc.2022.11.140.
    [11] 李般若, 霍璞, 喻君. 基于GNN的爆炸压力时空分布预测模型 [J]. 爆炸与冲击, 2025: 1–19. https://www.bzycj.cn/article/doi/ 10.11883/bzycj-2024-0503. DOI: 10.11883/bzycj-2024-0503.

    LI B R, HUO P, YU J. GNN-based predictive model for spatial and temporal distribution of blast overpressure [J]. Explosion and Shock Waves, 2025: 1–19. DOI: 10.11883/bzycj-2024-0503.
    [12] ZHAO C F, ZHU Y F, ZHOU Z H. Machine learning-based approaches for predicting the dynamic response of RC slabs under blast loads [J]. Engineering Structures, 2022, 273: 115104. DOI: 10.1016/j.engstruct.2022.115104.
    [13] ZHAO C, YE X, HE K, et al. Numerical study and theoretical analysis on blast resistance of fabricated concrete slab [J]. Journal of Building Engineering, 2020, 32(8): 101760. DOI: 10.1016/j.jobe.2020.101760.
    [14] 杜永峰, 靳振飞. 灌浆套筒连接装配式剪力墙爆炸响应及参数分析 [J]. 世界地震工程, 2020, 36(4): 62–70. DOI: 10.3969/j.issn.1007-6069.2020.04.008.

    DU Y F, JIN Z F. Explosive response and parameters analysis of prefabricated shear wall connected by grouting sleeve [J]. World Earthquake Engineering, 2020, 36(4): 62–70. DOI: 10.3969/j.issn.1007-6069.2020.04.008.
    [15] 周兆鹏, 闫秋实, 田栓柱, 等. 爆炸荷载作用下装配式钢筋混凝土板抗爆性能试验研究 [J]. 天津大学学报(自然科学与工程技术版), 2022, 55(6): 611–620. DOI: 10.11784/tdxbz202105056.

    ZHOU Z P, YAN Q S, TIAN S Z, et al. Experimental study on antiexplosion performance of precast concrete slabs under explosion load [J]. Journal of Tianjin University (Science and Technology), 2022, 55(6): 611–620. DOI: 10.11784/tdxbz202105056.
    [16] TIAN S Z, YAN Q S, DU X L, et al. Experimental and numerical studies on the dynamic response of precast concrete slabs under blast load [J]. Journal of Building Engineering, 2023, 70: 106425. DOI: 10.1016/j.jobe.2023.106425.
    [17] 董刚. 爆炸作用下装配式钢筋混凝土叠合板动态响应研究 [D]. 长春: 吉林建筑大学, 2023. DOI: 10.27714/d.cnki.gjljs.2023.000411.

    DONG G. Study on dynamic response of prefabricated reinforced concrete laminate slab under blast loading [D]. Changchun: Jilin Jianzhu University, 2023. DOI: 10.27714/d.cnki.gjljs.2023.000411.
    [18] 李建武, 闫秋实, 李述涛, 等. 装配式钢筋混凝土叠合板抗爆性能影响参数分析 [J]. 防护工程, 2022, 44(2): 17–21. DOI: 10.3969/j.issn.1674-1854.2022.02.003.

    LI J W, YAN Q S, LI S T, et al. Analysis of parameters affecting anti-blast performance of prefabricated reinforced concrete laminated slabs [J]. Protective Engineering, 2022, 44(2): 17–21. DOI: 10.3969/j.issn.1674-1854.2022.02.003.
    [19] CHOI J H, CHOI S J, KIM J H J, et al. Evaluation of blast resistance and failure behavior of prestressed concrete under blast loading [J]. Construction and Building Materials, 2018, 173: 550–572. DOI: 10.1016/j.conbuildmat.2018.04.047.
    [20] WANG W, HUO Q, YANG J C, et al. Damage analysis of POZD coated square reinforced concrete slab under contact blast [J]. Defence Technology, 2022, 18(9): 1715–1726. DOI: 10.1016/j.dt.2021.07.005.
    [21] 赵春风, 向思麒, 朱玉富. 基于机器学习的RC板爆炸两阶段损伤评估模型 [J]. 建筑结构学报, 2025, 46(1): 212–222. DOI: 10.14006/j.jzjgxb.2023.0727.

    ZHAO C F, XIANG S Q, ZHU Y F. A two-stage damage assessment model for RC slab under explosion based on machine learning [J]. Journal of Building Structures, 2025, 46(1): 212–222. DOI: 10.14006/j.jzjgxb.2023.0727.
    [22] 李忠献, 师燕超. 建筑结构抗爆分析理论 [M]. 北京: 科学出版社, 2015.

    LI Z X, SHI Y C. Blast analysis of building structures [M]. Beijing: Science Press, 2015.
    [23] LI K, LONG Y P, WANG H, et al. Modeling and sensitivity analysis of concrete creep with machine learning methods [J]. Journal of Materials in Civil Engineering, 2021, 33(8): 04021206. DOI: 10.1061/(ASCE)MT.1943-5533.0003843.
    [24] YU J B. State of health prediction of lithium-ion batteries: multiscale logic regression and Gaussian process regression ensemble [J]. Reliability Engineering & System Safety, 2018, 174: 82–95. DOI: 10.1016/j.ress.2018.02.022.
    [25] BREIMAN L. Random forests [J]. Machine Learning, 2001, 45(1): 5–32. DOI: 10.1023/A:1010933404324.
    [26] 张成玺. 爆炸载荷下钢筋混凝土构件的动态响应及损伤评估 [D]. 济南: 山东建筑大学, 2024. DOI: 10.27273/d.cnki.gsajc.2024.000353.

    ZHANG C X. Dynamic responseand damage assessment of reinforced concrete members under explosive loading [D]. Ji’an: Shandong Jianzhu University, 2024. DOI: 10.27273/d.cnki.gsajc.2024.000353.
    [27] LIAO Y, SHI S Q, CHEN S, et al. Numerical evaluation of the retrofit effectiveness for polyurea-woven glass fiber mesh composite retrofitted RC slab subjected to blast loading [J]. Structures, 2022, 36: 215–232. DOI: 10.1016/j.istruc.2021.12.012.
    [28] 汪维. 钢筋混凝土构件在爆炸载荷作用下的毁伤效应及评估方法研究 [D]. 长沙: 国防科学技术大学, 2012.

    WANG W. Study on damage effects and assessments method of reinforced concrete structural members under blast loading [D]. Changsha: National University of Defense Technology, 2012.
    [29] 李天华, 赵均海, 魏雪英, 等. 爆炸荷载下钢筋混凝土板的动力响应及参数分析 [J]. 建筑结构, 2012, 42(S1): 786–790. DOI: 10.19701/j.jzjg.2012.s1.194.

    LI T H, ZHAO J H, WEI X Y, et al. Dynamic response and parametric analysis on reinforced concrete slabs under blast loadings [J]. Building Structure, 2012, 42(S1): 786–790. DOI: 10.19701/j.jzjg.2012.s1.194.
    [30] TMS-1300. Structures to Resist the Effects of Accidental Explosions[S]. Washington, D. C: Department of the Army, the Navy, and the Air Force, 1990.
    [31] 于晓辉, 王猛, 宁超列. 基于机器学习的钢筋混凝土柱失效模式两阶段判别方法 [J]. 建筑结构学报, 2022, 43(8): 220–231. DOI: 10.14006/j.jzjgxb.2020.0392.

    YU X H, WANG M, NING C L. A machine-learning-based two-step method for failure mode classification of reinforced concrete columns [J]. Journal of Building Structures, 2022, 43(8): 220–231. DOI: 10.14006/j.jzjgxb.2020.0392.
    [32] COHEN J. A coefficient of agreement for nominal scales [J]. Educational and Psychological Measurement, 1960, 20: 37–46. DOI: 10.1177/001316446002000104.
    [33] MCVAY M K, STATION U S A E W E, ENGINEERS U S A C O. Spall Damage of Concrete Structures [M]. U. S. Army Engineer Waterways Experiment Station, 1988.
    [34] LI Y, CHEN Z Y, REN X B, et al. Experimental and numerical study on damage mode of RC slabs under combined blast and fragment loading [J]. International Journal of Impact Engineering, 2020, 142: 103579. DOI: 10.1016/j.ijimpeng.2020.103579.
  • 加载中
图(15) / 表(11)
计量
  • 文章访问数:  192
  • HTML全文浏览量:  34
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-10
  • 修回日期:  2025-09-25
  • 网络出版日期:  2025-09-30

目录

    /

    返回文章
    返回