球体垂直入水空泡实验研究

马庆鹏 何春涛 王聪 魏英杰 路中磊 孙健

马庆鹏, 何春涛, 王聪, 魏英杰, 路中磊, 孙健. 球体垂直入水空泡实验研究[J]. 爆炸与冲击, 2014, 34(2): 174-180. doi: 10.11883/1001-1455(2014)02-0174-07
引用本文: 马庆鹏, 何春涛, 王聪, 魏英杰, 路中磊, 孙健. 球体垂直入水空泡实验研究[J]. 爆炸与冲击, 2014, 34(2): 174-180. doi: 10.11883/1001-1455(2014)02-0174-07
Ma Qing-peng, He Chun-tao, Wang Cong, Wei Ying-jie, Lu Zhong-lei, Sun Jian. Experimental investigation on vertical water-entry cavity of sphere[J]. Explosion And Shock Waves, 2014, 34(2): 174-180. doi: 10.11883/1001-1455(2014)02-0174-07
Citation: Ma Qing-peng, He Chun-tao, Wang Cong, Wei Ying-jie, Lu Zhong-lei, Sun Jian. Experimental investigation on vertical water-entry cavity of sphere[J]. Explosion And Shock Waves, 2014, 34(2): 174-180. doi: 10.11883/1001-1455(2014)02-0174-07

球体垂直入水空泡实验研究

doi: 10.11883/1001-1455(2014)02-0174-07
基金项目: 中央高校基本科研业务费专项项目(HIT.NSRIF.201159)
详细信息
    作者简介:

    马庆鹏(1988—), 男, 博士研究生

  • 中图分类号: O351.2

Experimental investigation on vertical water-entry cavity of sphere

More Information
  • 摘要: 针对球体垂直入水问题开展了实验研究,分析了入水空泡的形成、发展、闭合及溃灭过程。通过开展不同初始入水速度及表面沾湿状态的实验研究,得到了入水速度及表面沾湿状态对球体入水空泡流场的影响,同时分析了球体在垂直入水过程中的位移、速度、加速度以及阻力因数。结果表明,球体在水下的运动参数具有较强的非线性特性,速度较高、入水空泡深闭合的条件下,球体的运动参数及阻力因数曲线具有明显的波动。
  • 图  1  入水实验系统示意图

    Figure  1.  Schematic of the water-entry experiment

    图  2  球体垂直入水空泡的发展过程

    Figure  2.  Development of vertical water-entry cavity of sphere

    图  3  空泡敞开阶段

    Figure  3.  The open phase of the cavity

    图  4  空泡溃灭高速射流

    Figure  4.  High-speed jet flow during the collapse phase of the cavity

    图  5  不同入水速度条件下球体垂直入水空泡的发展过程

    Figure  5.  Development of vertical water-entry cavities of spheres with different entry velocities

    图  6  入水速度不同的球体垂直入水的运动参数和阻力因数

    Figure  6.  Motion parameters for spheres in vertical water entry with different entry velocities as well as drag coefficients

    图  7  表面沾湿状态不同的球体入水空泡的演化

    Figure  7.  Development of vertical water-entry cavities of spheres with different wetting surfaces

    图  8  表面沾湿状态不同的球体入水的运动参数和阻力因数

    Figure  8.  Motion parameters for spheres in vertical water entry with different wetting surfaces as well as drag coefficients

  • [1] Worthington A M, Cole R S. Impact with a liquid surface studied by the aid of instantaneous photography: Paper Ⅱ[J]. Philosophical Transactions of the Royal Society: Series A, 1900, 194: 175-200.
    [2] Gilbarg D, Anderson R A. Influence of atmospheric pressure on the phenomena accompanying the entry of spheres into water[J]. Journal of Applied Physics, 1948, 9(2): 127-139.
    [3] Richardson E G. The impact of a solid on a liquid surface[J]. Proceedings of the Physical Society of London, 1948, 61(4): 352-366. doi: 10.1088/0959-5309/61/4/308
    [4] May A, Woodhull J C. Drag coefficients of steel spheres entering water vertically[J]. Journal of Applied Physics, 1948, 19(12): 1109-1121. doi: 10.1063/1.1715027
    [5] May A, Woodhull J C. The virtual mass of a sphere entering water vertically[J]. Journal of Applied Physics, 1950, 21(12): 1285-1289. doi: 10.1063/1.1699592
    [6] May A. Effect of surface condition of a sphere on its water-entry cavity[J]. Journal of Applied Physics, 1951, 22(10): 1219-1222. doi: 10.1063/1.1699831
    [7] May A. Water entry and the cavity-running behavior of missiles[R]. ADA020429, 1975.
    [8] May A. Vertical entry of missiles into water[J]. Journal of Applied Physics, 1952, 23(12): 1362-1372. doi: 10.1063/1.1702076
    [9] Miloh T. Wave slam on a sphere penetrating a free surface[J]. Journal of Engineering Mathematics, 1981, 15(3): 221-240. doi: 10.1007/BF00042782
    [10] Miloh T. On the oblique water-entry problem of a rigid sphere[J]. Journal of Engineering Mathematics, 1991, 25(1): 77-92. doi: 10.1007/BF00036603
    [11] Miloh T. On the initial-stage slamming of a rigid sphere in a vertical water entry[J]. Applied Ocean Research, 1991, 13(1): 43-48. doi: 10.1016/S0141-1187(05)80039-2
    [12] Truscott T T, Techet A H. Water entry of spinning spheres[J]. Journal of Fluid Mechanics, 2009, 625: 135-165. doi: 10.1017/S0022112008005533
    [13] Truscott T T, Techet A H. A spin on cavity formation during water entry of hydrophobic and hydrophilic spheres[J]. Physics of Fluids, 2009, 21(12): 1703.
    [14] 顾建农, 张志宏, 范武杰.旋转弹丸入水侵彻规律[J].爆炸与冲击, 2005, 25(4): 341-349. doi: 10.3321/j.issn:1001-1455.2005.04.010

    Gu Jian-nong, Zhang Zhi-hong, Fan Wu-jie. Experimental study on the penetration law of a rotating pellet entering water[J]. Explosion and Shock Waves, 2005, 25(4): 341-349. doi: 10.3321/j.issn:1001-1455.2005.04.010
    [15] 李晓杰, 姜力, 闫鸿浩, 等.低侵彻手枪弹入水侵彻性能数值模拟研究[J].爆炸与冲击, 2007, 27(4): 319-324. doi: 10.3321/j.issn:1001-1455.2007.04.005

    Li Xiao-jie, Jiang Li, Yan Hong-hao, et al. Numerical simulation on low inbreaking handgun projectile drilling through the water[J]. Explosion and Shock Waves, 2007, 27(4): 319-324. doi: 10.3321/j.issn:1001-1455.2007.04.005
    [16] 张伟, 郭子涛, 肖新科, 等.弹体高速入水特性实验研究[J].爆炸与冲击, 2011, 31(6): 579-584. http://www.bzycj.cn/article/id/8740

    Zhang Wei, Guo Zi-tao, Xiao Xin-ke, et al. Experimental investigations on behaviors of projectile high-speed water entry[J]. Explosion and Shock Waves, 2011, 31(6): 579-584. http://www.bzycj.cn/article/id/8740
    [17] 何春涛, 王聪, 何乾坤, 等.圆柱体低速入水空泡试验研究[J].物理学报, 2012, 61(13): 4701.

    He Chun-tao, Wang Cong, He Qian-kun, et al. Low speed water-entry of cylindrical projectile[J]. Acta Physica Sinica, 2012, 61(13): 4701.
    [18] Truscott T T. Cavity dynamics of water entry for spheres and ballistic projectiles[D]. Massachusetts: Massachusetts Institute of Technology, 2009.
  • 加载中
图(8)
计量
  • 文章访问数:  4866
  • HTML全文浏览量:  575
  • PDF下载量:  789
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-12
  • 修回日期:  2012-12-24
  • 刊出日期:  2014-03-25

目录

    /

    返回文章
    返回