柱形装药条件下锥形水中爆炸激波管内的冲击波特性

郑监 卢芳云 陈荣

郑监, 卢芳云, 陈荣. 柱形装药条件下锥形水中爆炸激波管内的冲击波特性[J]. 爆炸与冲击, 2021, 41(10): 103201. doi: 10.11883/bzycj-2020-0316
引用本文: 郑监, 卢芳云, 陈荣. 柱形装药条件下锥形水中爆炸激波管内的冲击波特性[J]. 爆炸与冲击, 2021, 41(10): 103201. doi: 10.11883/bzycj-2020-0316
ZHENG Jian, LU Fangyun, CHEN Rong. Shock wave characteristics in a conical water explosion shock tube under cylindrical charge condition[J]. Explosion And Shock Waves, 2021, 41(10): 103201. doi: 10.11883/bzycj-2020-0316
Citation: ZHENG Jian, LU Fangyun, CHEN Rong. Shock wave characteristics in a conical water explosion shock tube under cylindrical charge condition[J]. Explosion And Shock Waves, 2021, 41(10): 103201. doi: 10.11883/bzycj-2020-0316

柱形装药条件下锥形水中爆炸激波管内的冲击波特性

doi: 10.11883/bzycj-2020-0316
基金项目: 国家自然科学基金(11872376)
详细信息
    作者简介:

    郑 监(1993- ),男,博士研究生,zhengjian14@nudt.edu.cn

    通讯作者:

    卢芳云(1963- ),女,博士,教授,博士生导师,fylu@nudt.edu.cn

  • 中图分类号: O382

Shock wave characteristics in a conical water explosion shock tube under cylindrical charge condition

  • 摘要: 锥形水中爆炸激波管是进行水中爆炸实验的一种装置,该装置能够通过较小装药量在相同距离处实现自由场水中较大装药量爆炸的冲击波峰值。为了获得柱形装药条件下锥形水中爆炸激波管内的冲击波特性,本文通过数值计算的方式,对不同圆锥角和不同柱形装药质量下锥形激波管内的冲击波传播过程进行了模拟,通过对不同工况下激波管内冲击波特性进行分析,发现其初始冲击波的衰减规律符合自由场水中的指数衰减形式,并拟合得到了与自由场水中爆炸相容的冲击波峰值、比冲量和能流密度经验公式;发现其二次脉动压力周期与炸药质量呈反常规的变化规律,并引入等效静水压深度解释了这一现象;发现其二次脉动压力幅值与初始冲击波幅值之比比自由场水中更大,而二次脉动压力的比冲量与初始冲击波冲量之比与自由场水中相当。
  • 图  1  锥形管内冲击波与自由场冲击波[14]

    Figure  1.  Shock wave in conical shock tube and free field[14]

    图  2  锥形激波管示意图[14]

    Figure  2.  Schematic of conical shock tube[14]

    图  3  不同的尖端装药类型示意图

    Figure  3.  Different charge type in the top end of the tube

    图  4  锥形激波管的计算模型示意图

    Figure  4.  The calculation model of the conical shock tube

    图  5  锥形激波管的压力时程曲线对比

    Figure  5.  Compare of the pressure profile from references [8-10] and the simulation results

    图  6  锥形激波管中冲击波的传播过程(α=4°, m=1.28 g)

    Figure  6.  Shock wave propagation process in the conical shock tube (α=4°, m=1.28 g)

    图  7  爆轰产物界面的发展(α=4°, m=1.28 g)

    Figure  7.  Evolution of the interface between water and detonation products (α=4°, m=1.28 g)

    图  8  典型的压力历史曲线(m=1.28 g, R/m1/3=1.84)

    Figure  8.  Typical pressure profile in the shock tube (m=1.28 g, R/m1/3=1.84)

    图  9  冲击波压力幅值在管内的衰减(Z=R/m1/3

    Figure  9.  Decay of the pressure peak in the shock tube (Z=R/m1/3)

    图  10  冲击波峰值压力系数kp与角度系数βp之间的关系

    Figure  10.  Relationship between maximum pressure coefficient kp and angular coefficient βp

    图  11  冲击波比冲量在管内的衰减

    Figure  11.  Decay of the specific impulse of shock wave in the shock tube

    图  12  冲击波能流密度在管内的衰减

    Figure  12.  Decay of the energy flow density of shock wave in the shock tube

    图  13  冲击波冲量系数ki与角度系数βi之间的关系

    Figure  13.  Relationship between ki, the coefficient of the specific impluse and βi, the angular coefficient

    图  14  冲击波能流密度系数ke与角度系数βe之间的关系

    Figure  14.  Relationship between ke, the coefficient of the energy flow density and βe, the angular coefficient

    图  15  冲击波比冲量指数ni与质量放大系数η之间的关系

    Figure  15.  Relationship between specific impulse exponent ni and amplification factor η

    图  16  冲击波能量密度指数ne与质量放大系数η之间的关系

    Figure  16.  Relationship between energy density exponent ne and amplification factor η

    图  17  二次脉动压力周期T与炸药质量m之间的关系

    Figure  17.  Relationship between T, the period of the second pulse, and m, the mass of the explosive

    图  18  不同质量m下的等效静水压深度D

    Figure  18.  Equivalent hydrostatic depth (D) due to different mass of the explosive (m)

    表  1  TNT的JWL状态方程参数

    Table  1.   The JWL EOS parameters for TNT

    参数A/GPaB/PaR1R1ω
    取值373.8374.74.150.90.35
    下载: 导出CSV

    表  2  水的状态方程参数

    Table  2.   The EOS parameters for water

    ρ0/(kg·m−3A1/GPaA2/GPaA3/GPaB0B1T1/GPaT2/Pa
    1×1032.29.5414.570.280.282.20
    下载: 导出CSV

    表  3  4340钢的基本参数

    Table  3.   Basic parameters for 4340 steel

    参数ρ/(kg·m−3E/PaνAs/PaBs/PansCms
    取值7.83×1032.0×10110.297.92×1085.10×1080.260.0141.03
     注:ν为泊松比,E为弹性模量.
    下载: 导出CSV

    表  4  基于数值模拟结果拟合得到的初始冲击波压力峰值、比冲量和能流密度曲线方程的参数及决定系数

    Table  4.   Parameters and determination coefficient of fitting curve Eq. for simulational results of maximum pressure, specific impulse and energy flow density

    αkpnpR2 (pm)ki/105niR2 (i)ke/105neR2 (e)
    864.041.130.97932.990.4640.95675811.620.9978
    647.761.130.98472.220.4760.91833491.690.9980
    517.211.130.98071.730.4900.93802421.790.9988
    10°430.141.130.97411.590.5830.94741811.860.9992
    360°[16] 52.161.130.00580.8910.982.10
    下载: 导出CSV

    表  5  二次脉动压力幅值与初始冲击波幅值之比

    Table  5.   The secondary impulse pressure peak to the initial shock pressure peak ratio

    (R·m−1/3)/(m·kg−1/3)p2m/pm
    α=4°α=6°α=8°α=10°
    1.840.140.180.220.19
    1.460.210.240.290.24
    1.280.260.330.210.19
    平均0.200.250.240.21
    下载: 导出CSV

    表  6  二次脉动压力的正冲量与初始冲击波冲量之比

    Table  6.   The secondary impulse pressure’s impulse to the initial shock pressure impulse ratio

    (R·m−1/3)/(m·kg−1/3)i2/i1
    α=4°α=6°α=8°α=10°
    1.843.573.753.453.29
    1.463.803.744.053.38
    1.283.574.034.003.69
    平均3.653.843.833.45
    下载: 导出CSV

    表  7  冲击波峰值、比冲量和能流密度经验公式及其系数

    Table  7.   Constants of empirical expressions for peak pressure, the impulse and the energy flux density

    目标物理量表达式系数表达式指数表达式角度系数
    pm (MPa)pm=kp$(m^{1/3}/R)^{n_{ {p} }} $kp =38.35βp+13.81np=1.13βp=$\eta^{n_{ {p} }/3}$
    I (Pa·s)I/m1/3=ki$(m^{1/3}/R)^{n_{ {i} }} $ki =5923.5βi−163.5ni=0.46−0.432×0.9974ηβi=$\eta ^{(1+n_{ {i} })/3}$
    E (Pa·m)E/m1/3=ke$(m^{1/3}/R)^{n_{ {e} }} $ke =49279βe+48721ne=1.61−0.491×0.9988ηβe=$\eta^{ (1+n_{ {e} })/3}$
    下载: 导出CSV
  • [1] RAMAJEYATHILAGAM K, VENDHAN C P. Deformation and rupture of thin rectangular plates subjected to underwater shock [J]. International Journal of Impact Engineering, 2004, 30(6): 699–719. DOI: 10.1016/j.ijimpeng.2003.01.001.
    [2] HUNG C F, HSU P Y, HWANG-FUU J J. Elastic shock response of an air-backed plate to underwater explosion [J]. International Journal of Impact Engineering, 2005, 31(2): 151–168. DOI: 10.1016/j.ijimpeng.2003.10.039.
    [3] 汪斌, 张远平, 王彦平. 水中爆炸气泡脉动现象的实验研究 [J]. 爆炸与冲击, 2008, 28(6): 572–576. DOI: 10.11883/1001-1455(2008)06-0572-05.

    WANG B, ZHANG Y P, WANG Y P. Experimental study on bubble oscillation formed during underwater explosions [J]. Explosion and Shock Waves, 2008, 28(6): 572–576. DOI: 10.11883/1001-1455(2008)06-0572-05.
    [4] 朱凌, 段沐德, 黄骏德. 固支方板对水下爆炸的塑性动力响应 [J]. 海军工程大学学报, 1987(3): 1009–3486.
    [5] LEE J J, SMITH M J, HUANG J, et al. Deformation and rupture of thin steel plates due to cumulative loading from underwater shock and bubble collapse [J]. Shock and Vibration, 2011, 18(3): 459–470. DOI: 10.3233/SAV-2010-0526.
    [6] 郑监, 卢芳云, 李翔宇. 金属板在水下爆炸加载下的动态响应研究进展 [J]. 中国测试, 2018, 44(10): 20–30. DOI: 10.11857/j.issn.1674-5124.2018.10.004.

    ZHENG J, LU F Y, LI X Y. Research progress on dynamic response of metal plate in underwater explosion loading [J]. China Measurement & Test, 2018, 44(10): 20–30. DOI: 10.11857/j.issn.1674-5124.2018.10.004.
    [7] 张效慈. 水下爆炸试验相似准则 [J]. 船舶力学, 2007, 11(1): 108–118. DOI: 10.3969/j.issn.1007-7294.2007.01.014.

    ZHANG X C. Similarity criteria for experiment of underwater explosion [J]. Journal of Ship Mechanics, 2007, 11(1): 108–118. DOI: 10.3969/j.issn.1007-7294.2007.01.014.
    [8] LEBLANC J, GARDNER N, SHUKLA A. Effect of polyurea coatings on the response of curved E-Glass/Vinyl ester composite panels to underwater explosive loading [J]. Composites Part B: Engineering, 2013, 44(1): 565–574. DOI: 10.1016/j.compositesb.2012.02.038.
    [9] LEBLANC J, SHUKLA A. Dynamic response of curved composite panels to underwater explosive loading: experimental and computational comparisons [J]. Composite Structures, 2011, 93(11): 3072–3081. DOI: 10.1016/j.compstruct.2011.04.017.
    [10] LEBLANC J, SHUKLA A. Response of E-glass/vinyl ester composite panels to underwater explosive loading: effects of laminate modifications [J]. International Journal of Impact Engineering, 2011, 38(10): 796–803. DOI: 10.1016/j.ijimpeng.2011.05.004.
    [11] DESHPANDE V S, HEAVER A, FLECK N A. An underwater shock simulator [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462(2067): 1021–1041. DOI: 10.1098/rspa.2005.1604.
    [12] ESPINOSA H D, LEE S, MOLDOVAN N. A novel fluid structure interaction experiment to investigate deformation of structural elements subjected to impulsive loading [J]. Experimental Mechanics, 2006, 46(6): 805–824. DOI: 10.1007/s11340-006-0296-7.
    [13] FILLER W S. Propagation of shock waves in a hydrodynamic conical shock tube [J]. The Physics of Fluids, 1964, 7(5): 664–667. DOI: 10.1063/1.1711266.
    [14] ZALESAK J F, POCHÉ JR L B. The shock test facility: an explosive-driven, water-filled conical shock tube [C]// Proceedings of a Conference Sponsored by the Department of Defense, the National Aeronautics and Space Administration, and the Department of Energy. Virginia Beach, 1989: 73−76.
    [15] HESHMATI M, ZAMANI J, MOZAFARI A. The experimental and numerical impacts of geometrical parameters of conical shock tube on the function, maximum pressure and generative impulses to expose equivalent mass and behavioral equation [J]. Materials Science & Engineering Technology, 2016, 47(7): 623–634. DOI: 10.1002/mawe.201600510.
    [16] BJØRNØ L, LEVIN P. Underwater explosion research using small amounts of chemical explosives [J]. Ultrasonics, 1976, 14(6): 263–267. DOI: 10.1016/0041-624X(76)90033-0.
    [17] 库尔 P. 水下爆炸[M]. 罗耀杰, 韩润泽, 官信, 等, 译. 北京: 国防工业出版社, 1960: 167−168; 219.
    [18] KEIL A H. The response of ships to underwater explosions [R]. New York: Society of Naval Architects and Marine Engineers, 1961: 43.
  • 加载中
图(18) / 表(7)
计量
  • 文章访问数:  639
  • HTML全文浏览量:  323
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-04
  • 修回日期:  2021-03-03
  • 网络出版日期:  2021-09-16
  • 刊出日期:  2021-10-13

目录

    /

    返回文章
    返回