Citation: | DENG Li, MA Hu, WU Xiaosong, ZHOU Changsheng. Comparison of different methods for source terms in detonation simulation[J]. Explosion And Shock Waves, 2018, 38(1): 155-163. doi: 10.11883/bzycj-2016-0150 |
[1] |
刘君, 周松柏, 徐春光.超声速流动中燃烧现象的数值模拟方法及应用[M].长沙:国防科技大学出版社, 2008:76-79.
|
[2] |
BUSSING T R A. A finite volume method for the Navier-Stokes equations with finite rate chemistry[D]. Cambridge: Massachusetts Institute of Technology, 1985. http: //ci. nii. ac. jp/ncid/BB03917781
|
[3] |
BUSSING T R A, Murman E M. Finite-volume method for the calculation of compressible chemically reacting flows[J]. AIAA Journal, 1988, 26(9):1070-1078. doi: 10.2514/3.10013
|
[4] |
ZHONG X. Additive semi-implicit Runge-Kutta methods for computing high-speed non-equilibrium reactive flows[J]. Journal of Computational Physics, 1996, 128(1):19-31. doi: 10.1006/jcph.1996.0193
|
[5] |
ROSENBROCK H H. Some general implicit processes for the numerical solution of differential equations[J]. The Computer Journal, 1963, 5(4):329-330. doi: 10.1093/comjnl/5.4.329
|
[6] |
LEVEQUE R J, YEE H C. A study of numerical methods for hyperbolic conservation laws with stiff source terms[J]. Journal of Computational Physics, 1990, 86(1):187-210. doi: 10.1016/0021-9991(90)90097-K
|
[7] |
ORAN E S, BORIS J P. Numerical simulation of reactive flow[M]. Cambridge: Cambridge University Press, 2005:114-158.
|
[8] |
YOUNG T R, BORIS J P. A numerical technique for solving stiff ordinary differential equations associated with the chemical kinetics of reactive-flow problems[J]. The Journal of Physical Chemistry, 1977, 81(25):2424-2427. doi: 10.1021/j100540a018
|
[9] |
CHIANG T, HOFFMANN K. Determination of computational time step for chemically reacting flows[C]//Proceedings of AIAA 20th Fluid Dynamics, Plasma Dynamics and Laser Conference. Buffalo, New York, USA, 1989.
|
[10] |
MOTT D R, ORAN E S, VAN L B. A quasi-steady-state solver for the stiff ordinary differential equations of reaction kinetics[J]. bJournal of Computational Physics, 2000, 164(2):407-428. doi: 10.1006/jcph.2000.6605
|
[11] |
MOTT D R, ORAN E S. CHEMEQ2: A solver for the stiff ordinary differential equations of chemical kinetics[R]. Naval Research Lab, Washington D C, 2001.
|
[12] |
刘瑜. 化学非平衡流的计算方法研究及其在激波诱导燃烧现象模拟中的应用[D]. 长沙: 国防科技大学, 2008. http: //cdmd. cnki. com. cn/Article/CDMD-90002-2009213254. htm
LIU Yu. Investigations into numerical methods of chemical non-equilibrium flow and its application to simulation of shock-induced combustion phenomenon[D]. Changsha: National University of Defense Technology, 2008. http: //cdmd. cnki. com. cn/Article/CDMD-90002-2009213254. htm
|
[13] |
刘君, 张涵信, 高树椿.一种新型的计算化学非平衡流动的解耦方法[J].国防科技大学学报, 2000, 22(5):19-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gfkjdxxb200005005
LIU Jun, ZHANG Hanxin, GAO Shuchun. A new uncoupled method for numerical simulation of non-equilibrium flow[J]. Journal of National University of Defense Technology, 2000, 22(5):19-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gfkjdxxb200005005
|
[14] |
刘世杰, 林志勇, 孙明波, 等.采用不同化学反应源项处理方法的胞格爆轰数值研究[J].国防科技大学学报, 2010, 32(5):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gfkjdxxb201005001
LIU Shijie, LIN Zhiyong, SUN Mingbo, et al. Numerical simulation of cellular detonation using different chemical reaction source term methods[J]. Journal of National University of Defense Technology, 2010, 32(5):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gfkjdxxb201005001
|
[15] |
JACHIMOWSKI C J. An analytical study of the hydrogen-air reaction mechanism with application to scramjet combustion[R]. NASA TechnicaI Paper 2791, 1988.
|
[16] |
潘沙. 高超声速气动热数值模拟方法及大规模并行计算研究[D]. 长沙: 国防科技大学, 2010. http: //cdmd. cnki. com. cn/Article/CDMD-90002-2010271147. htm
PAN Sha. Hypersonic aerothermal numerical simulation method and massive parallel computation research[D]. Changsha: National University of Defense Technology, 2010. http: //cdmd. cnki. com. cn/Article/CDMD-90002-2010271147. htm
|
[17] |
TORO E F. Riemann solvers and numerical methods for fluid dynamics: A practical introduction[M]. Springer Science & Business Media, 2009: 531-542.
|
[18] |
LEHR H F. Experiments on shock-induced combustion[J]. Astronautica Acta, 1972, 17:589-597. https://www.researchgate.net/publication/279938305_Experiments_on_shock-induced_combustion
|
[19] |
MCVEY J B, TOONG T Y. Mechanism of instabilities of exothermic hypersonic blunt-body flows[J]. Combustion Science and Technology, 1971, 3(2):63-76. doi: 10.1080/00102207108952273
|
[20] |
CHOI J Y, JEUNG I S, YOON Y. Computational fluid dynamics algorithms for unsteady shock-induced combustion: Part 1: Validation[J]. AIAA Journal, 2000, 38(7):1179-1187. doi: 10.2514/2.1112
|
[21] |
刘世杰, 孙明波, 林志勇, 等.钝头体激波诱导振荡燃烧现象的数值模拟[J].力学学报, 2010, 42(4):597-606. doi: 10.6052/0459-1879-2010-4-lxxb2010-086
LIU Shijie J, SUN Mingbo, LIN Zhiyong, et al. Numerical research on blunt body shock-induced oscillation combustion phenomenon[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(4):597-606. doi: 10.6052/0459-1879-2010-4-lxxb2010-086
|