Citation: | LI Yanchao, BI Mingshu, GAO Wei. Theoretical prediction of hydrogen cloud explosion overpressure considering self-accelerating flame propagation[J]. Explosion And Shock Waves, 2021, 41(7): 072101. doi: 10.11883/bzycj-2020-0140 |
[1] |
KIM W K, MOGI T, DOBASHI R. Flame acceleration in unconfined hydrogen/air deflagrations using infrared photography [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6): 1501–1505. DOI: 10.1016/j.jlp.2013.09.009.
|
[2] |
KIM W K, MOGI T, KUWANA K, et al. Prediction model for self-similar propagation and blast wave generation of premixed flames [J]. International Journal of Hydrogen Energy, 2015, 40(34): 11087–11092. DOI: 10.1016/j.ijhydene.2015.06.123.
|
[3] |
WU F J, JOMAAS G, LAW C K. An experimental investigation on self-acceleration of cellular spherical flames [J]. Proceedings of the Combustion Institute, 2013, 34(1): 937–945. DOI: 10.1016/j.proci.2012.05.068.
|
[4] |
CAI X, WANG J, BIAN Z, et al. On transition to self-similar acceleration of spherically expanding flames with cellular instabilities [J]. Combustion and Flame, 2020, 215(5): 364–375. DOI: 10.1016/j.combustflame.2020.02.001.
|
[5] |
DESHAIES B, LEYER J C. Flow field induced by unconfined spherical accelerating flames [J]. Combustion and Flame, 1981, 40: 141–153. DOI: 10.1016/0010-2180(81)90119-X.
|
[6] |
PU L, SHAO X, LI Q, et al. A simple and effective approach for evaluating unconfined hydrogen/air cloud explosions [J]. International Journal of Hydrogen Energy, 2018, 43(21): 10193–10204. DOI: 10.1016/j.ijhydene.2018.04.041.
|
[7] |
MOLKOV V V, MAKAROV D V, SCHNEIDER H. Hydrogen-air deflagration in open atmosphere: Large eddy simulation analysis of experimental data [J]. International Journal of Hydrogen Energy, 2007, 32(13): 2198–2205. DOI: 10.1016/j.ijhydene.2007.04.021.
|
[8] |
TOLIAS I C, VENETSANOS A G, MARKATOS N, et al. CFD evaluation against a large scale unconfined hydrogen deflagration [J]. International Journal of Hydrogen Energy, 2017, 42(11): 7731–7739. DOI: 10.1016/j.ijhydene.2016.07.052.
|
[9] |
THOMAS A, WILLIAMS G T. Flame noise: sound emission from spark-ignited bubbles of combustible gas [J]. Proceedings of the Royal Society of London: Series A: Mathematical and Physical Sciences, 1966, 294: 449–466. DOI: 10.1098/rspa.1966.0218.
|
[10] |
LEYER J C, DESBORDES D, CLOUD J P S, et al. Unconfined deflagrative explosion without turbulence: experiment and model [J]. Journal of Hazardous Materials, 1993, 34(2): 123–150. DOI: 10.1016/0304-3894(93)85002-V.
|
[11] |
LAPALME D, LEMAIRE R, SEERS P. Assessment of the method for calculating the Lewis number of H2/CO/CH4 mixtures and comparison with experimental results [J]. International Journal of Hydrogen Energy, 2017, 42(12): 8314–8328. DOI: 10.1016/j.ijhydene.2017.01.099.
|
[12] |
SUN Z, LIU F, BAO X, et al. Research on cellular instabilities in outwardly propagating spherical hydrogen-air flames [J]. International Journal of Hydrogen Energy, 2012, 37(9): 7889–7899. DOI: 10.1016/j.ijhydene.2012.02.011.
|
[13] |
LI Y, BI M, ZHANG S, et al. Dynamic couplings of hydrogen/air flame morphology and explosion pressure evolution in the spherical chamber [J]. International Journal of Hydrogen Energy, 2018, 43(4): 2503–2513. DOI: 10.1016/j.ijhydene.2017.12.044.
|
[14] |
MUKAIYAMA K, SHIBAYAMA S, KUWANA K. Fractal structures of hydrodynamically unstable and diffusive-thermally unstable flames [J]. Combustion and Flame, 2013, 160(11): 2471–2475. DOI: 10.1016/j.combustflame.2013.05.017.
|
[15] |
GOSTINTSEV Y A, ISTRATOV A G, SHULENIN Y V. Self-similar propagation of a free turbulent flame in mixed gas mixture [J]. Combustion, Explosion, and Shock Waves, 1988, 24(5): 563–569. DOI: 10.1007/BF00755496.
|