Volume 41 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
CHEN An, YU Yonggang. Ignition process and propellant grains distribution of the two-module charge[J]. Explosion And Shock Waves, 2021, 41(7): 072301. doi: 10.11883/bzycj-2020-0215
Citation: CHEN An, YU Yonggang. Ignition process and propellant grains distribution of the two-module charge[J]. Explosion And Shock Waves, 2021, 41(7): 072301. doi: 10.11883/bzycj-2020-0215

Ignition process and propellant grains distribution of the two-module charge

doi: 10.11883/bzycj-2020-0215
  • Received Date: 2020-06-28
  • Rev Recd Date: 2020-10-09
  • Available Online: 2021-06-04
  • Publish Date: 2021-07-05
  • The accumulation form of propellant grains has a great effect on the initial chamber pressure wave in the ignition and flame-spreading process of a modular charge. In this process, the grains distribution is determined by the dynamic characteristics of grains after the cartridge is broken. Therefore, a visualized ignition simulation experimental device was designed for the ignition test of the two-module charge with different initial loading positions. A high-speed camera system was used to observe the ignition and flame propagation, the rupture of combustible cartridge cases, and the moving process of the propellant grains. The experimental results show as follows. When the two-module charging position is far from the primer and the spacing between the two modules is increased, the time of flame propagation in the chamber is prolonged. And the cartridge cases are more completely burned and their rupture areas become larger. The propellant grains in the chamber are finally scattered in the axial 195–500 mm area starting from the end face of the primer side. The grains are mainly distributed in the steep-slope accumulation on the right side of the chamber. On the basis of the experiment, a three-dimensional unsteady gas-solid two-phase flow model for the modular charge was established. The dynamic process and distribution of the propellant grains was simulated. The calculation results are basically consistent with the test ones, which validate the rationality of the established model.
  • loading
  • [1]
    王泽山. 模块装药技术及其进展 [J]. 含能材料, 2004, 12(A01): 122. DOI: 10.3969/j.issn.1006-9941.2004.z1.031.

    WANG Z S. Modular charge technology and its progress [J]. Chinese Journal of Energetic Materials, 2004, 12(A01): 122. DOI: 10.3969/j.issn.1006-9941.2004.z1.031.
    [2]
    余斌. 刚性组合装药可燃传火管性能试验研究 [J]. 火炸药学报, 2002, 25(4): 70–71. DOI: 10.3969/j.issn.1007-7812.2002.04.026.

    YU B. Experimental study on ignition and flame spreading of modular charge [J]. Chineses Journal of Explosives and Propellant, 2002, 25(4): 70–71. DOI: 10.3969/j.issn.1007-7812.2002.04.026.
    [3]
    周瑶. 模块装药总体结构及装药弹道性能研究[D]. 南京: 南京理工大学, 2005. DOI: 10.7666/d.y1000320.
    [4]
    韩博, 张晓志, 邢浴仁, 等. 大口径火炮发射装药点传火模拟试验装置的研究 [J]. 兵工学报, 2008, 29(3): 262–265. DOI: 10.3321/j.issn:1000-1093.2008.03.002.

    HAN B, ZHANG X Z, XING Y R, et al. Research on simulation testing device of the ignition system for large caliber propellant charging [J]. Acta Armamentarii, 2008, 29(3): 262–265. DOI: 10.3321/j.issn:1000-1093.2008.03.002.
    [5]
    张洪林. 模块装药性能研究[D]. 南京: 南京理工大学, 2009. DOI: 10.7666/d.y1698703.

    ZHANG H L. The study of performance for modular propelling charge [D]. Nanjing: Nanjing University of Science and Technology, 2009. DOI: 10.7666/d.y1698703.
    [6]
    陆中兵, 周彦煌. 模块装药膛内两相燃烧模型及压力波模拟 [J]. 爆炸与冲击, 1999, 19(3): 269–273.

    LU Z B, ZHOU Y H. Two-phase-combustion mode and numerical simulation of pressure wave in the gun with modular charges [J]. Explosion and Shock Waves, 1999, 19(3): 269–273.
    [7]
    赵毅. 模块装药点传火过程的数值模拟 [J]. 火炸药学报, 2003, 26(2): 33–36. DOI: 10.3969/j.issn.1007-7812.2003.02.012.

    ZHAO Y. Numerical simulation for ignition and flame-spreading of modular charge [J]. Chineses Journal of Explosives and Propellant, 2003, 26(2): 33–36. DOI: 10.3969/j.issn.1007-7812.2003.02.012.
    [8]
    王育维, 郭映华, 董彦诚, 等. 可燃容器对小号模块装药压力波影响的研究 [J]. 火炮发射与控制学报, 2016, 37(2): 31–35; 45. DOI: 10.19323/j.issn.1673-6524.2016.02.007.

    WANG Y W, GUO Y H, DONG Y C, et al. Study of combustible case effects on pressure waves for low-zone of bi-modular charge [J]. Journal of Gun Launch and Control, 2016, 37(2): 31–35; 45. DOI: 10.19323/j.issn.1673-6524.2016.02.007.
    [9]
    DONG Y C, WANG Y W, GUO Y H, et al. Effect of random factors of charge on interior ballistic performance [C] // 31st International Symposium on Ballistics. USA: DEStech Publication, Inc., 2019. DOI: 10.12783/ballistics2019/33088.
    [10]
    曾思敏. 内弹道中的脉冲X射线摄影技术装备的研制及其应用的研究[D]. 南京: 南京理工大学, 1988. DOI: 10.7666/d.Y139890.
    [11]
    SOPER W G. Grain velocities during ignition of gun propellant [J]. Combustion and Flame, 1975, 24(2): 199–202. DOI: 10.1016/0010-2180(75)90148-0.
    [12]
    SOPER W G. Ignition waves in gun chambers [J]. Combustion and Flame, 1973, 20(2): 157–162. DOI: 10.1016/S0010-2180(73)80169-5.
    [13]
    EAST J L. Ignition and flame spreading phenomena in granular propellant gun charges [J]. Progress in Astronautics and Aeronautics, 1979, 66: 228–245.
    [14]
    金志明. 火炮膛内压力波产生机理及其特征分析 [J]. 南京理工大学学报(自然科学版), 1992(1): 26–31. DOI: 10.14177/j.cnki.32-1397n.1992.01.006.

    JIN Z M. Generation mechanism and characteristic analysis of pressure wave in gun [J]. Journal of Nanjing University of Science and Technology, 1992(1): 26–31. DOI: 10.14177/j.cnki.32-1397n.1992.01.006.
    [15]
    宋明, 金志明. 火炮膛内压力波的数值模拟 [J]. 兵工学报, 1992, 13(1): 12–19.

    SONG M, JIN Z M. Numerical simulation of pressure waves in guns [J]. Acta Armamentarii, 1992, 13(1): 12–19.
    [16]
    王国强, 郝万军, 王继新. 离散单元法及其在EDEM上的实践[M]. 西安: 西北工业大学出版社, 2010: 16–18.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views (332) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return