LIU Minlong, CHEN Shihai, SUN Jie, HE Fang, JIE Hairong. Detection and numerical simulation of blasting-induced damage in shallow-buried twin tunnels with small spacing[J]. Explosion And Shock Waves, 2021, 41(11): 115201. doi: 10.11883/bzycj-2020-0378
Citation: LIU Minlong, CHEN Shihai, SUN Jie, HE Fang, JIE Hairong. Detection and numerical simulation of blasting-induced damage in shallow-buried twin tunnels with small spacing[J]. Explosion And Shock Waves, 2021, 41(11): 115201. doi: 10.11883/bzycj-2020-0378

Detection and numerical simulation of blasting-induced damage in shallow-buried twin tunnels with small spacing

doi: 10.11883/bzycj-2020-0378
  • Received Date: 2020-10-12
  • Rev Recd Date: 2021-06-01
  • Available Online: 2021-11-01
  • Publish Date: 2021-11-23
  • In order to study the damage effect of blasting load on the surrounding rock of shallow-buried small spacing twin tunnels, the shallow-buried tunneling section of the south extension project of Shunhe Expressway is taken as the engineering background. Firstly, based on the dynamic damage evolution and Hoffman failure criterion, an anisotropic dynamic damage constitutive model for rock materials is established. Then, by using the secondary development function of the LSDYNA software, the constitutive model is applied to the numerical simulation of the tunnel blasting damage. Finally, based on the acoustic wave measurement theory, the wave velocities in the surrounding rock of the shallow-buried small spacing twin tunnels before and after blasting were measured by using non-metallic ultrasonic detectors, and the damage of the surrounding rock is evaluated from changes in wave velocity. The applicability of the anisotropic dynamic damage constitutive model and the accuracy of the numerical results are verified by comparing the numerical simulation results with the field test results. The numerical simulation results show that the maximum damage radius of single-hole blasting is 0.58 m, and the maximum damage depth is 1.88 m. According to the failure threshold of the rock mass, the horizontal failure range of the rock mass can reach 0.14 m, and the failure depth is 1.70 m. According to the field test, the damage degree of the middle intercalated rock is higher than that of the other parts of the surrounding rock in the alternate blasting excavation of the double track tunnel. The damage range of the surrounding rock caused by blasting excavation is about 0.50 m, which is close to the simulation results, and verifying the accuracy of the anisotropic dynamic damage constitutive model. The research results have a certain guiding role on the blasting excavation and damage control of shallow-buried twin tunnels with small spacing..
  • [1]
    蔚立元, 李术才, 徐帮树. 青岛小净距海底隧道爆破振动响应研究 [J]. 土木工程学报, 2010, 43(8): 100–108. DOI: 10.15951/j.tmgcxb.2010.08.008.

    YU L Y, LI S C, XU B S. Study on the effect of blasting vibration for Qingdao twin subsea tunnels [J]. China Civil Engineering Journal, 2010, 43(8): 100–108. DOI: 10.15951/j.tmgcxb.2010.08.008.
    [2]
    GRADY D E, KIPP M E. Continuum modelling of explosive fracture in oil shale [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1980, 17(3): 147–157. DOI: 10.1016/0148-9062(80)91361-3.
    [3]
    TAYLOR L M, CHEN E P, KUSZMAUL J S. Microcrack-induced damage accumulation in brittle rock under dynamic loading [J]. Computer Methods in Applied Mechanics and Engineering, 1986, 55(3): 301–320. DOI: 10.1016/0045-7825(86)90057-5.
    [4]
    陈俊桦, 张家生, 李新平. 考虑岩体完整程度的岩石爆破损伤模型及应用 [J]. 岩土工程学报, 2016, 38(5): 857–866. DOI: 10.11779/CJGE201605011.

    CHEN J H, ZHANG J S, LI X P. Model of rock blasting-induced damage considering integrity of rock mass and its application [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 857–866. DOI: 10.11779/CJGE201605011.
    [5]
    汪杰, 宋卫东, 付建新. 考虑节理倾角的岩体损伤本构模型及强度准则 [J]. 岩石力学与工程学报, 2018, 37(10): 2253–2263. DOI: 10.13722/j.cnki.jrme.2018.0496.

    WANG J, SONG W D, FU J X. A damage constitutive model and strength criterion of rock mass considering the dip angle of joints [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(10): 2253–2263. DOI: 10.13722/j.cnki.jrme.2018.0496.
    [6]
    欧雪峰, 张学民, 张聪, 等. 冲击加载下板岩压缩破坏层理效应及损伤本构模型研究 [J]. 岩石力学与工程学报, 2019, 38(S2): 3503–3511. DOI: 10.13722/j.cnki.jrme.2019.0391.

    OU X F, ZHANG X M, ZHANG C, et al. Study on bedding effect and damage constitutive model of slate under compressive dynamic loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3503–3511. DOI: 10.13722/j.cnki.jrme.2019.0391.
    [7]
    闫长斌. 爆破作用下岩体累积损伤效应及其稳定性研究 [D]. 长沙: 中南大学, 2006: 21−27. DOI: 10.7666/d.y1190354.
    [8]
    孟凡兵, 林从谋, 蔡丽光, 等. 小净距隧道爆破开挖中夹岩累积损伤计算方法及其应用 [J]. 岩土力学, 2011, 32(5): 1491–1494; 1499. DOI: 10.3969/j.issn.1000-7598.2011.05.032.

    MENG F B, LIN C M, CAI L G, et al. Cumulative damage evaluation of clip rock in small-distance tunnels caused by blasting excavation and its application [J]. Rock and Soil Mechanics, 2011, 32(5): 1491–1494; 1499. DOI: 10.3969/j.issn.1000-7598.2011.05.032.
    [9]
    王智德, 夏元友, 周雄, 等. 顺层岩质边坡爆破的振动控制及损伤特性 [J]. 爆炸与冲击, 2017, 37(1): 27–36. DOI: 10.11883/1001-1455(2017)01-0027-10.

    WANG Z D, XIA Y Y, ZHOU X, et al. Blasting vibration control and damage characteristics of bedding rock slopes [J]. Explosion and Shock Waves, 2017, 37(1): 27–36. DOI: 10.11883/1001-1455(2017)01-0027-10.
    [10]
    TANG C M. Numerical simulation of progressive rock failure and associated seismicity [J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(2): 249–261. DOI: 10.1016/S0148-9062(96)00039-3.
    [11]
    MA G W, AN X M. Numerical simulation of blasting-induced rock fractures [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(6): 966–975. DOI: 10.1016/j.ijrmms.2007.12.002.
    [12]
    胡英国, 卢文波, 陈明, 等. 岩石爆破损伤模型的比选与改进 [J]. 岩土力学, 2012, 33(11): 3278–3284. DOI: 10.16285/j.rsm.2012.11.012.

    HU Y G, LU W B, CHEN M, et al. Comparison and improvement of blasting damage models for rock [J]. Rock and Soil Mechanics, 2012, 33(11): 3278–3284. DOI: 10.16285/j.rsm.2012.11.012.
    [13]
    曹峰, 凌同华, 李洁, 等. 循环爆破荷载作用下小净距隧道中夹岩的累积损伤特征分析 [J]. 振动与冲击, 2018, 37(23): 141–148. DOI: 10.13465/j.cnki.jvs.2018.23.020.

    CAO F, LING T H, LI J, et al. Cumulative damage feature analysis for shared rock in a neighborhood tunnel under cyclic explosion loading [J]. Journal of Vibration and Shock, 2018, 37(23): 141–148. DOI: 10.13465/j.cnki.jvs.2018.23.020.
    [14]
    杨栋, 李海波, 夏祥, 等. 高地应力条件下爆破开挖诱发围岩损伤的特性研究 [J]. 岩土力学, 2014, 35(4): 1110−1116; 1122. DOI: 10.16285/j.rsm.2014.04.012.

    YANG D, LI H B, XIA X, et al. Study of blasting-induced dynamic damage of tunnel surrounding rocks under high in-situ stress [J]. Rock and Soil Mechanics, 2014, 35(4): 1110−1116; 1122. DOI: 10.16285/j.rsm.2014.04.012.
    [15]
    李新平, 陈俊桦, 李友华, 等. 溪洛渡电站地下厂房爆破损伤范围及判据研究 [J]. 岩石力学与工程学报, 2010, 29(10): 2042–2049.

    LI X P, CHEN J H, LI Y H, et al. Study of criterion and damage zone induced by excavation blasting of underground power-house of Xiluodu hydropower station [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(10): 2042–2049.
    [16]
    谢福君, 张家生, 陈俊桦. 冲击荷载作用下岩石压动态和拉动态损伤模型 [J]. 中南大学学报(自然科学版), 2019, 50(2): 420–427. DOI: 10.11817/j.issn.1672-7207.2019.02.022.

    XIE F J, ZHANG J S, CHEN J H. Dynamic damage model of rock under impact loads of compression and tension [J]. Journal of Central South University (Science and Technology), 2019, 50(2): 420–427. DOI: 10.11817/j.issn.1672-7207.2019.02.022.
    [17]
    闫长斌, 徐国元, 杨飞. 爆破动荷载作用下围岩累积损伤效应声波测试研究 [J]. 岩土工程学报, 2007, 29(1): 88–93. DOI: 10.3321/j.issn:1000-4548.2007.01.014.

    YAN C B, XU G Y, YANG F. Measurement of sound waves to study cumulative damage effect on surrounding rock under blasting load [J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 88–93. DOI: 10.3321/j.issn:1000-4548.2007.01.014.
    [18]
    LI Q B, ZHANG C H, WANG G L. Dynamic damage constitutive model of concrete in uniaxial tension [J]. Engineering Fracture Mechanics, 1996, 53(3): 449–455. DOI: 10.1016/0013-7944(95)00123-9.
    [19]
    杨大勇. 基于能量原理的岩石损伤研究 [D]. 武汉: 武汉工业学院, 2008: 9−12. DOI: 10.7666/d.d051299.
    [20]
    孙培峰, 杨天鸿. 基于Hoffman准则的层状岩体巷道稳定性研究 [C]//第25届全国结构工程学术会议论文集: 第Ⅱ册. 包头, 2016: 54−60.
    [21]
    杨仁树, 许鹏. 爆炸作用下介质损伤破坏的分形研究 [J]. 煤炭学报, 2017, 42(12): 3065–3071. DOI: 10.13225/j.cnki.jccs.2017.0107.

    YANG R S, XU P. Fractal study of media damage under blasting loading [J]. Journal of China Coal Society, 2017, 42(12): 3065–3071. DOI: 10.13225/j.cnki.jccs.2017.0107.
    [22]
    朱传云, 喻胜春. 爆破引起岩体损伤的判别方法研究 [J]. 工程爆破, 2001, 7(1): 12–16. DOI: 10.3969/j.issn.1006-7051.2001.01.003.

    ZHU C Y, YU S C. Study on the criterion of rockmass damage caused by blasting [J]. Engineering Blasting, 2001, 7(1): 12–16. DOI: 10.3969/j.issn.1006-7051.2001.01.003.
  • Relative Articles

    [1]LI Zhiwen, LI Qian, XU Bin, LI Xiaofeng, LI Haibo. Research on the dynamic response of shallow-buried circular non-complete bonded tunnels under anti-plane line source loading[J]. Explosion And Shock Waves, 2024, 44(8): 081423. doi: 10.11883/bzycj-2023-0454
    [2]ZHAO Zhenyu, ZHOU Yilai, REN Jianwei, LU Tianjian. Explosion morphology and impacting effects of shallow-buried explosives[J]. Explosion And Shock Waves, 2022, 42(4): 042303. doi: 10.11883/bzycj-2021-0376
    [3]YANG Jianhua, DAI Jinhao, YAO Chi, HU Yingguo, ZHANG Xiaobo, ZHOU Chuangbing. Displacement mutation characteristics and energy mechanisms of anchored jointed rock slopes under blasting excavation disturbance[J]. Explosion And Shock Waves, 2022, 42(3): 035201. doi: 10.11883/bzycj-2021-0126
    [4]WANG Hailong, ZHAO Yan, WANG Haijun, PENG Chanyuan, TONG Xiao. De-noising method of tunnel blasting signal based on CEEMDAN decomposition-wavelet packet analysis[J]. Explosion And Shock Waves, 2021, 41(5): 055202. doi: 10.11883/bzycj-2020-0123
    [5]CHEN Yang, WU Liang, XU Feng, LU Shuai. Dynamic response of existing large oil storage tank under blasting excavation vibration[J]. Explosion And Shock Waves, 2018, 38(6): 1394-1403. doi: 10.11883/bzycj-2017-0128
    [6]Fei Honglu, Zeng Xiangyu, Yang zhiguang. Influence of tunnel excavation blasting vibration on earth's surface based on wavelet packet analysis[J]. Explosion And Shock Waves, 2017, 37(1): 77-83. doi: 10.11883/1001-1455(2017)01-0077-07
    [7]Zhong Guosheng, Ao Liping, Fu Yuhua. Model experimental studies of vibration effect and damage evolution of tunnel's surrounding rock under cyclic blasting excavation[J]. Explosion And Shock Waves, 2016, 36(6): 853-860. doi: 10.11883/1001-1455(2016)06-0853-08
    [8]Gong Min, Wu Hao-jun, Meng Xiang-dong, Li Yong-qiang. A precisely-controlled blasting method and vibration analysis for tunnel excavation under dense buildings[J]. Explosion And Shock Waves, 2015, 35(3): 350-358. doi: 10.11883/1001-1455(2015)03-0350-09
    [9]Fei Hong-lu, Zhang Guo-hui. Displacement responses of Dahuanggou surrounding rock with small clearance under blast loads[J]. Explosion And Shock Waves, 2013, 33(1): 91-97. doi: 10.11883/1001-1455(2013)01-0091-07
    [10]YANG Jian-hua, LU Wen-bo, CHEN Ming, ZHOU Chuang-bing. Anequivalentsimulationmethodforblastingvibrationofsurroundingrock[J]. Explosion And Shock Waves, 2012, 32(2): 157-163. doi: 10.11883/1001-1455(2012)02-0157-07
    [11]LIU Zhen-wen, XU Xiao-mei, QIN Liu-huai. Underwatersoundeffectsgeneratedbytunnel-explosionnearthecoastalharbor[J]. Explosion And Shock Waves, 2011, 31(1): 88-94. doi: 10.11883/1001-1455(2011)01-0088-07
    [12]YAN Peng, LU Wen-bo, LI Hong-tao, CHEN Ming, ZHOU Chuang-bing. Influences of geo-stress on energy distribution of vibration induced by blasting excavation[J]. Explosion And Shock Waves, 2009, 29(2): 182-188. doi: 10.11883/1001-1455(2009)02-0182-07
    [13]LIU Gang, LI Hong-liang, LIU Dian-kui. Scattering of a semi-cylindrical canyon and a crack with incident SH waves[J]. Explosion And Shock Waves, 2007, 27(2): 171-178. doi: 10.11883/1001-1455(2007)02-0171-08
    [14]LI Yun-peng, AI Chuan-zhi, HAN Chang-ling, HUO Ming. Study on dynamics effect caused by blasting construction by numerical simulation for tunnels with small spacing[J]. Explosion And Shock Waves, 2007, 27(1): 75-81. doi: 10.11883/1001-1455(2007)01-0075-07
  • Cited by

    Periodical cited type(21)

    1. 于洋,高晨,李治国,孙祁究,杨泽. 小净距隧道爆破荷载作用下衬砌的损伤特征. 科技通报. 2025(01): 91-99 .
    2. 李旭哲,李文杰,毕志刚,梁斌. 小净距隧道先行洞爆破开挖对后行洞围岩稳定性影响研究. 振动与冲击. 2024(07): 42-49+83 .
    3. 徐红玉,焦治豪,毕志刚,李文杰. 降雨入渗对防军隧道浅埋小净距段围岩稳定性的影响. 河南科技大学学报(自然科学版). 2024(03): 69-76+87+7-8 .
    4. 陈璐,曹洪涛,周子龙,曾铃,高山,刘洋,凌同华,聂森林. 硬岩小净距隧道先行洞的爆破振动响应规律. 中南大学学报(自然科学版). 2024(09): 3354-3367 .
    5. 徐平,黄琳炎,吴鸿胜. 浅埋小净距隧道衬砌爆破振动影响因素分析. 公路. 2024(11): 364-369 .
    6. 周楚淮. 山区高速公路超小净距隧道施工方案优化研究. 公路. 2024(11): 385-396 .
    7. 于远祥,沈鹏,张永亮,王有发. 动静组合荷载下隧道锚固围岩累积损伤效应与支护优化. 西安科技大学学报. 2024(06): 1095-1106 .
    8. 孟德生,彭小东,杨光华. 无中墙连拱隧道减振技术及安全控制标准. 现代隧道技术. 2024(06): 251-260 .
    9. 黄江,陈士海,曾凡福,苏松. 多次爆破作用下巷道围岩累积损伤演化与破裂特征. 华侨大学学报(自然科学版). 2023(01): 29-37 .
    10. 杨杭澎,俞缙,付晓强,姚玮,林聪波,常方强. 交替爆破开挖下分岔隧道中夹岩损伤特征研究. 振动与冲击. 2023(01): 46-53+88 .
    11. 陈涛,袁超义,薛瑞华,佟强,何本国. 大断面蚀变岩圆形引水隧洞施工期稳定性研究. 四川水力发电. 2023(01): 93-96+104 .
    12. 吴志超,龚敏,仇安兵,吴晓东,刘翔宇,彭娇娇. 硬岩地下洞室工程爆破振动与围岩损伤范围相关性研究. 爆破. 2023(01): 160-169 .
    13. 黄永辉,孙博,张智宇,钱正乾,王军,李洪超. 岩石RHT本构的爆破碎裂判定方法优化及验证. 北京理工大学学报. 2023(06): 565-574 .
    14. 吴波,崔阿龙,徐世祥,林一石,黄勇华,林孝明. 钻爆法施工小净距隧道的损伤与振动. 福建工程学院学报. 2023(04): 314-319 .
    15. 郭云龙,时步炯,孟海利,孙崔源,薛里. 爆破振动对邻近铁路隧道衬砌结构的影响. 铁道建筑. 2023(09): 105-110 .
    16. 靳玉娟,王嘉琪. 考虑损伤累积效应的矿山边坡稳定性分析及加固方案研究. 金属矿山. 2023(10): 214-220 .
    17. 操鹏. 新建隧道爆破振动对既有邻近设施的影响规律. 科技和产业. 2023(23): 237-242 .
    18. 万春浪,黄文宁. 山岭隧道爆破条件下初支混凝土振动影响研究. 西部交通科技. 2022(03): 75-79 .
    19. 王姚姚,汪海波,程兵,宗琦,谢平,王梦想. 巷道掘进药卷与钻孔直径匹配关系对爆破破裂范围的影响. 爆破. 2022(02): 107-113 .
    20. 黄宜伟. 近郊区四洞并行大断面小净距隧道洞口浅埋段施工技术分析. 工程技术研究. 2022(22): 82-84 .
    21. 何程. 爆破作用下岩体累积损伤效应的声波测试. 韶关学院学报. 2021(12): 14-18 .

    Other cited types(13)

  • 加载中
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 26.3 %FULLTEXT: 26.3 %META: 60.4 %META: 60.4 %PDF: 13.2 %PDF: 13.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 100.0 %其他: 100.0 %其他

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views (375) PDF downloads(84) Cited by(34)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return