Volume 41 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
WU Jingsi, ZHANG Peili, WANG Dong, LIU Huishu, XIAO Jun. Effects of distribution form and location of different branch tunnels on overpressure characteristics of ventedgasoline-air mixture explosion in closed vessels[J]. Explosion And Shock Waves, 2021, 41(11): 115401. doi: 10.11883/bzycj-2021-0078
Citation: WU Jingsi, ZHANG Peili, WANG Dong, LIU Huishu, XIAO Jun. Effects of distribution form and location of different branch tunnels on overpressure characteristics of ventedgasoline-air mixture explosion in closed vessels[J]. Explosion And Shock Waves, 2021, 41(11): 115401. doi: 10.11883/bzycj-2021-0078

Effects of distribution form and location of different branch tunnels on overpressure characteristics of ventedgasoline-air mixture explosion in closed vessels

doi: 10.11883/bzycj-2021-0078
  • Received Date: 2021-03-05
  • Rev Recd Date: 2021-08-10
  • Available Online: 2021-09-30
  • Publish Date: 2021-11-23
  • The branch structure of the tunnel significantly affects the overpressure characteristics of combustible gas explosions in confined space. However, most of previous studies involved explosions in branch vessels were limited to single branch structure, effects of the distribution form and location of the branch structure were rarely considered. In order to explore the influence of various branch distribution forms and locations on overpressure characteristics of vented gasoline-air mixture explosion in closed vessels, the experiments were carried out using three kinds of branch tunnel distribution forms (linear/staggered/symmetrical) and three kinds of branch tunnel locations (near to the spark plug/far from the spark plug/evenly distributed along the main tunnel), under the condition of the same tunnel volume (0.24 m3), initial fuel volume concentration (1.2%) and ignition energy (5 J). The maximum explosion overpressure pmax, the time to reach maximum explosion overpressure, the maximum rates of pressure rise (dp/dt)max, and the deflagration index KG were examined. Moreover, the effects of distribution form and location of branch tunnels on overpressure characteristics were discussed. Results show that explosion overpressure characteristics are strongly influenced by branch tunnels' distribution form and location. In terms of the symmetrical distribution, the maximum explosion overpressure, the maximum rates of pressure rise, and the deflagration index KG are the lowest among the three types of distribution forms of branch tunnel. Linear and staggered distributions have similar overpressure characteristics, whose explosion overpressure, maximum rates of pressure rise, deflagration index KG are 1.14, 1.52 and 1.52 times of those in the symmetrical situation respectively. Time to reach the maximum explosion overpressure and time to reach the maximum rates of pressure rise in the symmetrical situation are delayed, which are 1.31 and 1.30 times of those in the linear and staggered situations respectively. The maximum rates of pressure rise and the deflagration index KG descend in the following distribution locations: far from the spark plug, near to the spark plug, evenly distributed along the main tunnel. The results indicate that the farther the branch tunnel from the ignition end, the larger the explosion intensity index, and the closer the branch tunnel from the ignition end, the earlier the time to reach the maximum explosion overpressure rising rate.
  • loading
  • [1]
    ZHU Y, QIAN X M, LIU Z Y, et al. Analysis and assessment of the Qingdao crude oil vapor explosion accident: lessons learnt [J]. Journal of Loss Prevention in the Process Industries, 2015, 33: 289–303. DOI: 10.1016/j.jlp.2015.01.004.
    [2]
    胡宏伟, 宋浦, 赵省向, 等. 有限空间内部爆炸研究进展 [J]. 含能材料, 2013, 21(4): 539–546. DOI: 10.3969/j.issn.1006-9941.2013.04.026.

    HU H W, SONG P, ZHAO S X, et al. Progress in explosion in confined space [J]. Chinese Journal of Energetic Materials, 2013, 21(4): 539–546. DOI: 10.3969/j.issn.1006-9941.2013.04.026.
    [3]
    NISHIMURA I, MOGI T, DOBASHI R. Simple method for predicting pressure behavior during gas explosions in confined spaces considering flame instabilities [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(2): 351–354. DOI: 10.1016/j.jlp.2011.08.009.
    [4]
    刘乐海, 毕凤荣, 于洋洋, 等. 填充密度对球形非金属隔片抑制丙烷爆炸性能的影响 [J]. 含能材料, 2021, 29(9): 840–847. DOI: 10.11943/CJEM2020217.

    LIU L H, BI F R, YU Y Y, et al. Influence of packed densities of nonmetallic spherical spacers on propane explosion suppression [J]. Chinese Journal of Energetic Materials, 2021, 29(9): 840–847. DOI: 10.11943/CJEM2020217.
    [5]
    王志荣, 孙培培, 唐振华, 等. 密闭容器甲烷-空气混合物爆炸的尺寸效应 [J]. 中国安全科学学报, 2021, 31(1): 60–66. DOI: 10.16265/j.cnki.issn1003-3033.2021.01.009.

    WANG Z R, SUN P P, TANG Z H, et al. Size effect of methane-air mixture explosion in closed vessel [J]. China Safety Science Journal, 2021, 31(1): 60–66. DOI: 10.16265/j.cnki.issn1003-3033.2021.01.009.
    [6]
    程关兵, 王国大, 黄燕晓. 氢气爆燃转爆轰特性试验研究 [J]. 中国安全科学学报, 2016, 26(12): 64–68. DOI: 10.16265/j.cnki.issn1003-3033.2016.12.012.

    CHENG G B, WANG G D, HUANG Y X. Experimental study on characteristics of hydrogen deflagration to detonation transition [J]. China Safety Science Journal, 2016, 26(12): 64–68. DOI: 10.16265/j.cnki.issn1003-3033.2016.12.012.
    [7]
    熊小鹤, 丁艳军, 操晓波, 等. 基于激波管装置的乙烯氧化实验研究与动力学机理分析 [J]. 物理化学学报, 2016, 32(6): 1416–1423. DOI: 10.3866/PKU.WHXB2016032501.

    XIONG X H, DING Y J, CAO X B, et al. Ethylene oxidation experimental study and kinetic mechanism analysis based on shock tube [J]. Acta Physico-Chimica Sinica, 2016, 32(6): 1416–1423. DOI: 10.3866/PKU.WHXB2016032501.
    [8]
    BLANCHARD R, ARNDT D, GRÄTZ R, et al. Explosions in closed pipes containing baffles and 90 degree bends [J]. Journal of Loss Prevention in the Process Industries, 2010, 23(2): 253–259. DOI: 10.1016/j.jlp.2009.09.004.
    [9]
    SULAIMAN S Z, KASMANI R M, KIAH M H M, et al. The influence of 90 degree bends in closed pipe system on the explosion properties using hydrogen-enriched methane [J]. Chemical Engineering Transactions, 2014, 36: 271–276. DOI: 10.3303/CET1436046.
    [10]
    王海燕, 王静云, 葛会芳, 等. 瓦斯爆炸波在转弯巷道内传播特征的模拟 [J]. 安全, 2015, 36(4): 31–33, 37. DOI: 10.3969/j.issn.1002-3631.2015.04.010.

    WANG H Y, WANG J Y, GE H F, et al. Simulation of propagation characteristics of gas explosion wave in turning roadway [J]. Safety & Security, 2015, 36(4): 31–33, 37. DOI: 10.3969/j.issn.1002-3631.2015.04.010.
    [11]
    黄强, 穆朝民, 王亚军, 等. 瓦斯体积分数对90°弯管泄爆特性的影响 [J]. 中国安全科学学报, 2020, 30(11): 101–107. DOI: 10.16265/j.cnki.issn1003-3033.2020.11.015.

    HUANG Q, MU C M, WANG Y J, et al. Effects of gas volume fraction on venting features of 90° elbows after explosion [J]. China Safety Science Journal, 2020, 30(11): 101–107. DOI: 10.16265/j.cnki.issn1003-3033.2020.11.015.
    [12]
    李国庆, 杜扬, 吴松林, 等. T型分支坑道对油气爆炸传播特性的影响 [J]. 后勤工程学院学报, 2014, 30(5): 32–35,75. DOI: 10.3969/j.issn.1672-7843.2014.05.007.

    LI G Q, DU Y, WU S L, et al. Effect of T-branch tunnel on the transmission characteristics of gasoline-air mixture explosion [J]. Journal of Logistical Engineering University, 2014, 30(5): 32–35,75. DOI: 10.3969/j.issn.1672-7843.2014.05.007.
    [13]
    LIBERMAN M A, IVANOV M F, KIVERIN A D. Effects of thermal radiation heat transfer on flame acceleration and transition to detonation in particle-cloud hydrogen flames [J]. Journal of Loss Prevention in the Process Industries, 2015, 38: 176–186. DOI: 10.1016/j.jlp.2015.09.006.
    [14]
    杜扬, 李国庆, 李阳超, 等. T型分支管道对油气爆炸压力的影响 [J]. 爆炸与冲击, 2017, 37(2): 323–331. DOI: 10.11883/1001-1455(2017)02-0323-09.

    DU Y, LI G Q, LI Y C, et al. Effects of a T-shaped branch pipe on overpressure of gasoline-air mixture explosion [J]. Explosion and Shock Waves, 2017, 37(2): 323–331. DOI: 10.11883/1001-1455(2017)02-0323-09.
    [15]
    杜扬, 李蒙, 李国庆, 等. 含双侧分支结构受限空间油气泄压爆炸超压特性与火焰行为 [J]. 化工进展, 2018, 37(7): 2557–2564. DOI: 10.16085/j.issn.1000-6613.2017-2522.

    DU Y, LI M, LI G Q, et al. Effects of bilateral branches structure on characteristics of gasoline-air mixtures explosion overpressure and flame behavior in a semi-confined space [J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2557–2564. DOI: 10.16085/j.issn.1000-6613.2017-2522.
    [16]
    NIU Y H, SHI B M, JIANG B Y. Experimental study of overpressure evolution laws and flame propagation characteristics after methane explosion in transversal pipe networks [J]. Applied Thermal Engineering, 2019, 154: 18–23. DOI: 10.1016/j.applthermaleng.2019.03.059.
    [17]
    杨志, 周凯元, 谢立军, 等. Z型管道中气体火焰传播规律的实验研究 [J]. 火灾科学, 2006, 15(3): 111–115. DOI: 10.3969/j.issn.1004-5309.2006.03.001.

    YANG Z, ZHOU K Y, XIE L J, et al. Experimental study of flame transition in the “Z” type tube [J]. Fire Safety Science, 2006, 15(3): 111–115. DOI: 10.3969/j.issn.1004-5309.2006.03.001.
    [18]
    王汉良, 周凯元, 夏昌敬. 气体爆轰波在弯曲管道中传播特性的实验研究 [J]. 火灾科学, 2001, 10(4): 209–212. DOI: 10.3969/j.issn.1004-5309.2001.04.004.

    WANG H L, ZHOU K Y, XIA C J. Experimental studies of the propagation of detonation waves through the bends [J]. Fire Safety Science, 2001, 10(4): 209–212. DOI: 10.3969/j.issn.1004-5309.2001.04.004.
    [19]
    ZHAI C, LIN B Q, YE Q, et al. Influence of geometry shape on gas explosion propagation laws in bend roadways [J]. Procedia Earth and Planetary Science, 2009, 1(1): 193–198. DOI: 10.1016/j.proeps.2009.09.032.
    [20]
    董铭鑫, 赵东风, 尹法波, 等. 通风管网中瓦斯爆炸火焰波传播特性三维数值模拟 [J]. 煤炭学报, 2020, 45(S1): 291–299. DOI: 10.13225/j.cnki.jccs.2019.1173.

    DONG M X, ZHAO D F, YIN F B, et al. Flame propagation characteristics of gas explosion in 3D ventilation pipe network by numerical simulation [J]. Journal of China Coal Society, 2020, 45(S1): 291–299. DOI: 10.13225/j.cnki.jccs.2019.1173.
    [21]
    GIURCAN V, RAZUS D, MITU M, et al. Prediction of flammability limits of fuel-air and fuel-air-inert mixtures from explosivity parameters in closed vessels [J]. Journal of Loss Prevention in the Process Industries, 2015, 34: 65–71. DOI: 10.1016/j.jlp.2015.01.025.
    [22]
    刘文辉, 蒋新生, 何标, 等. 氧气体积分数对油气爆炸特性的影响 [J]. 后勤工程学院学报, 2014, 30(5): 47–52. DOI: 10.3969/j.issn.1672-7843.2014.05.010.

    LIU W H, JIANG X S, HE B, et al. Influence of oxygen volume fraction on explosion characteristics of gasoline-air mixture [J]. Journal of Logistical Engineering University, 2014, 30(5): 47–52. DOI: 10.3969/j.issn.1672-7843.2014.05.010.
    [23]
    RAZUS D, BRINZEA V, MITU M, et al. Temperature and pressure influence on maximum rates of pressure rise during explosions of propane-air mixtures in a spherical vessel [J]. Journal of Hazardous Materials, 2011, 190(1–3): 891–896. DOI: 10.1016/j.jhazmat.2011.04.018.
    [24]
    王建, 王冬, 张培理, 等. 三种多分支结构坑道内油气爆炸过程的大涡模拟 [J]. 当代化工, 2019, 48(8): 1811–1815. DOI: 10.3969/j.issn.1671-0460.2019.08.044.

    WANG J, WANG D, ZHANG P L, et al. Large eddy simulation of the explosion process of oil and gas in three kinds of tunnels with multi-branched structure [J]. Contemporary Chemical Industry, 2019, 48(8): 1811–1815. DOI: 10.3969/j.issn.1671-0460.2019.08.044.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (388) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return