Volume 43 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
LOU Xiaoming, GUAN Xuhui, ZENG Lingfeng, GUO Wenkang, YUE Bin, LU Wei. Characteristics of the impact pressure of the hole wall by interval charge at the hole bottom[J]. Explosion And Shock Waves, 2023, 43(6): 065201. doi: 10.11883/bzycj-2022-0109
Citation: LOU Xiaoming, GUAN Xuhui, ZENG Lingfeng, GUO Wenkang, YUE Bin, LU Wei. Characteristics of the impact pressure of the hole wall by interval charge at the hole bottom[J]. Explosion And Shock Waves, 2023, 43(6): 065201. doi: 10.11883/bzycj-2022-0109

Characteristics of the impact pressure of the hole wall by interval charge at the hole bottom

doi: 10.11883/bzycj-2022-0109
  • Received Date: 2022-03-22
  • Rev Recd Date: 2022-04-22
  • Available Online: 2022-05-05
  • Publish Date: 2023-06-05
  • On the premise of a good crushing effect, reducing the rock mass vibration above the bottom of the upward fan-shaped deep hole by reducing the peak pressure of the shock wave at the bottom of the hole is an effective measure to protect the superstructure. To determine the reasonable length of the air column at the bottom of the hole, the influence of air column length on the impact pressure of the hole wall without consideration of air column coupling is studied by combining the theoretical analysis with the field model blast experiment. Based on the theories of one-dimensional unsteady hydrodynamics and theoretical detonation physics, the action process and propagation law of the shock wave in the blast hole in different stages after the explosion of the bottom air interval cylindrical charge column are discussed. Considering the reflection and transmission of shock waves at different media interfaces, the parameters of the shock wave propagating in different directions, the initial shock pressure, and the action time of the hole wall pressure in each stage are analyzed. Thus, the calculation formula and variation curves of the pressure on the hole wall in each stage are obtained. Six groups of twelve cylindrical thick wall concrete models of different sizes were designed and made, and the bottom air interval blasting model experiments were carried out to verify the above results. The air column lengths were 200, 400, 600, 800, 1 000 and 1 200 mm. During the blasting process, an ultra-high-speed multi-channel dynamic strain testing system was used to monitor the hole wall impact pressure. The monitoring data are then analyzed, and the theoretical results are verified. Finally, the variation curves of the peak pressures with the axial uncoupling factor and the variation curves of hole wall impact pressure with time and measurement point under different uncoupling factors are obtained. Based on the dynamic compressive strength of rock, reasonable length ranges of bottom axial air interval suitable for soft, medium, and hard rocks are determined. A field industrial blasting experiment was carried out with the air interval at the hole bottom to verify the rationality of the conclusion. The roof forming and the blasting pile size after the blast are observed and analyzed by photography. The research results show that the existence of air interval significantly increases the action time of the impact pressure. The peak value of the impact pressure decreases obviously. When the uncoupling factor is 1.5 and the length of the air column is 200 mm, the attenuation ratio of the peak pressure at the hole bottom is 73.4%; when the uncoupling factor is 4 and the length of the air column is 1.2 m, the attenuation ratio of the peak pressure at the hole bottom reaches 96.7%. When the air interval is greater than 60 cm, an area with low pressure appears at the bottom of the blast hole. A reasonable bottom air interval length can not only ensure good blasting fragmentation but also reduce blasting vibration by reducing the peak pressure at the hole bottom, thus protecting the stope roof and other protected objects.
  • loading
  • [1]
    MELNIKOV N V. Charge construction influence on explosion operations efficiency [C] // Reports of the Ⅵ Science Symposium on Drilling, Explosives, Explosion Operations and Study of Physical and Mechanical Properties of Rocks. Rolla, USA, 1962.
    [2]
    MELNIKOV N V, MARCHENKO L N. Effective methods of application of explosion energy in mining and construction [C] // The 12th U. S. Symposium on Rock Mechanics. Rolla, USA: American Rock Mechanics Association, 1971: 359–378.
    [3]
    FOURNEY W L, BARKER D B, HOLLOWAY D C. Model studies of explosive well stimulation techniques [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1981, 18(2): 113–127. DOI: 10.1016/0148-9062(81)90737-3.
    [4]
    MOXON N T, MEAD D, RICHARDSON S B. Air-decked blasting techniques: some collaborative experiments [J]. Transactions of the Institution of Mining and Metallurgy, Section A: Mining Industry, 1993, 102: A25–A30.
    [5]
    CHAKRABORTY A K, JETHWA J L. Feasibility of air-deck blasting in various rock mass conditions: a case study [C] // MOHANTY B. Rock fragmentation by blasting. London: CRC Press, 1996: 343-349.
    [6]
    JHANWAR J C, CAKRABORTY A K, ANIREDDY H N, et al. Application of air decks in production blasting to improve fragmentation and economics of an open pit mine [J]. Geotechnical & Geological Engineering, 1999, 17(1): 37–57. DOI: 10.1023/A:1008899928839.
    [7]
    潘强, 张继春, 石洪超, 等. 单孔不耦合装药爆破的岩体损伤分布特征研究 [J]. 振动与冲击, 2019, 38(18): 264–269. DOI: 10.13465/j.cnki.jvs.2019.18.037.

    PAN Q, ZHANG J C, SHI H C, et al. Distribution characteristics of the rock mass damage caused by single-hole decoupling charge blasting [J]. Journal of Vibration and Shock, 2019, 38(18): 264–269. DOI: 10.13465/j.cnki.jvs.2019.18.037.
    [8]
    朱红兵, 卢文波, 吴亮. 空气间隔装药爆破机理研究 [J]. 岩土力学, 2007, 28(5): 986–990. DOI: 10.16285/j.rsm.2007.05.025.

    ZHU H B, LU W B, WU L. Research on mechanism of air-decking technique in bench blasting [J]. Rock and Soil Mechanics, 2007, 28(5): 986–990. DOI: 10.16285/j.rsm.2007.05.025.
    [9]
    曹祺, 王林桂, 马宏昊, 等. 底部空气柱装药爆破减振理论和实验研究 [J]. 工程爆破, 2020, 26(2): 42–48, 64. DOI: 10.3969/j.issn.1006-7051.2020.02.006.

    CAO Q, WANG L G, MA H H, et al. Research on blasting vibration reduction theory and experiment of bottom air column charging [J]. Engineering Blasting, 2020, 26(2): 42–48, 64. DOI: 10.3969/j.issn.1006-7051.2020.02.006.
    [10]
    LOU X M, WANG Z C, CHEN B G, et al. Theoretical calculation and experimental analysis on initial shock pressure of borehole wall under axial decoupled charge [J]. Shock and Vibration, 2018, 2018: 7036726. DOI: 10.1155/2018/7036726.
    [11]
    张馨, 孙金山, 张湘平, 等. 钻孔爆破炮孔孔壁压力计算模型 [J]. 爆破, 2021, 38(3): 1–5. DOI: 10.3963/j.issn.1001-487X.2021.03.001.

    ZHANG X, SUN J S, ZHANG X P, et al. Calculation model of blasthole pressure [J]. Blasting, 2021, 38(3): 1–5. DOI: 10.3963/j.issn.1001-487X.2021.03.001.
    [12]
    杨国梁, 杨仁树, 姜琳琳. 轴向间隔装药爆破沿炮孔的压力分布 [J]. 爆炸与冲击, 2012, 32(6): 653–657. DOI: 10.11883/1001-1455(2012)06-0653-05.

    YANG G L, YANG R S, JIANG L L. Pressure distribution along borehole with axial air-deck charge blasting [J]. Explosion and Shock Waves, 2012, 32(6): 653–657. DOI: 10.11883/1001-1455(2012)06-0653-05.
    [13]
    吴亮, 钟冬望, 卢文波. 空气间隔装药爆炸冲击荷载作用下混凝土损伤分析 [J]. 岩土力学, 2009, 30(10): 3109–3114. DOI: 10.16285/j.rsm.2009.10.045.

    WU L, ZHONG D W, LU W B. Study of concrete damage under blast loading of air-decking [J]. Rock and Soil Mechanics, 2009, 30(10): 3109–3114. DOI: 10.16285/j.rsm.2009.10.045.
    [14]
    吴亮, 卢文波, 钟冬望, 等. 混凝土介质中空气间隔装药的爆破机理 [J]. 爆炸与冲击, 2010, 30(1): 58–64. DOI: 10.11883/1001-1455(2010)01-0058-07.

    WU L, LU W B, ZHONG D W, et al. Blasting mechanism of air-decked charge in concrete medium [J]. Explosion and Shock Waves, 2010, 30(1): 58–64. DOI: 10.11883/1001-1455(2010)01-0058-07.
    [15]
    池恩安, 梁开水, 赵明生. 孔底空气间隔装药降振试验研究 [J]. 煤炭学报, 2012, 37(6): 944–950. DOI: 10.13225/j.cnki.jccs.2012.06.005.

    CHI E A, LIANG K S, ZHAO M S. Experimental study on vibration reduction of the hole-bottom air space charging [J]. Journal of China Coal Society, 2012, 37(6): 944–950. DOI: 10.13225/j.cnki.jccs.2012.06.005.
    [16]
    张志呈, 熊文, 吝曼卿. 炮孔底部空气间隔装药结构爆破理论与模型试验 [J]. 露天采矿技术, 2011(1): 40–44, 47. DOI: 10.13235/j.cnki.ltcm.2011.01.025.

    ZHANG Z C, XIONG W, LIN M Q. The blasting theory and model experiment of blast hole bottom air interval charge structure [J]. Opencast Mining Technology, 2011(1): 40–44, 47. DOI: 10.13235/j.cnki.ltcm.2011.01.025.
    [17]
    周毓麟. 一维非定常流体力学 [M]. 北京: 科学出版社, 1990: 144–170.
    [18]
    孙锦山, 朱建士. 理论爆轰物理 [M]. 北京: 国防工业出版社, 1995: 32–36.
    [19]
    李维新. 一维不定常流与冲击波 [M]. 北京: 国防工业出版社, 2003: 148–180.
    [20]
    HENRYCH J. 爆炸动力学及其应用 [M]. 熊建国, 译. 北京: 科学出版社, 1987: 123–151.
    [21]
    王光祖, 张运生. 冲击波和爆轰波的共异性 [J]. 超硬材料工程, 2005, 17(2): 14–17. DOI: 10.3969/j.issn.1673-1433.2005.02.004.

    WANG G Z, ZHANG Y S. Similarity and difference of shock wave and detonation wave [J]. Superhard Material Engineering, 2005, 17(2): 14–17. DOI: 10.3969/j.issn.1673-1433.2005.02.004.
    [22]
    汪旭光. 爆破设计与施工 [M]. 北京: 冶金工业出版社, 2011: 206–208.
    [23]
    李夕兵, 古德生. 岩石冲击动力学 [M]. 长沙: 中南工业大学出版社, 1994: 51–64.
    [24]
    单仁亮. 岩石冲击破坏力学模型及其随机性研究 [D]. 北京: 中国矿业大学(北京), 1997: 53–54.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(23)  / Tables(5)

    Article Metrics

    Article views (507) PDF downloads(145) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return