Volume 43 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
LU Lin, YAN Xuepu, HU Yanxiao, WANG Chen, GAO Cisong, ZHANG Dongxiao. Experiment on tail-slapping motion characteristics for oblique water-entry of a projectile[J]. Explosion And Shock Waves, 2023, 43(7): 073302. doi: 10.11883/bzycj-2022-0266
Citation: LU Lin, YAN Xuepu, HU Yanxiao, WANG Chen, GAO Cisong, ZHANG Dongxiao. Experiment on tail-slapping motion characteristics for oblique water-entry of a projectile[J]. Explosion And Shock Waves, 2023, 43(7): 073302. doi: 10.11883/bzycj-2022-0266

Experiment on tail-slapping motion characteristics for oblique water-entry of a projectile

doi: 10.11883/bzycj-2022-0266
  • Received Date: 2022-06-16
  • Rev Recd Date: 2022-09-22
  • Available Online: 2022-10-13
  • Publish Date: 2023-07-05
  • Based on high-speed photography technology, the oblique water-entry experiments of high-speed projectile under multiple conditions are carried out. During the experiment, five experiments were conducted for each condition, and the same phenomenon appeared in the experiment. A self-programing is utilized to capture the image’s pixels and extract the experimental data for the experimental photographs. By analyzing the formation, development, and collapse processes of the oblique water-entry cavity of high-speed projectile, the evolution characteristics of projectile cavitation during tail-slapping are concluded. In addition, by comparing and analyzing the variations of the cavity size, and the velocity and acceleration of projectiles with different initial velocities of the water-entry of the projectile, the influence of the initial velocities of the water-entry of the projectile on cavitation evolution characteristics and water-entry motion traits is summarized. The results show that after the tail-slapping of the projectile, part of the projectile tail penetrates through the original cavity and gets wet, and a new tail-slapping cavity is generated backward from the projectile tail. The tail-slapping cavity fits closely with the original cavity. At the end of the tail-slapping, the location of the tail-slapping cavity under the water is basically unchanged. The tail-slapping cavity is pulled away from the surface of the original cavity of the projectile and collapses, while the original cavity at the same depth accelerates and collapses under the influence of the jet generated by the tail-slapping. With the increase of the initial velocities of the water-entry of the projectile, the size of the tail-slapping cavity and the length of the original gradually increase, and so does the maximum wet area of the tail. With the increase of the number of tail-slapping, the velocity attenuation amplitude and the energy loss of the projectile in each tail-slapping increase, and the capacity of the speed storage of the projectile decreases.
  • loading
  • [1]
    RUZZENE M, SORANNA F. Impact dynamics of elastic stiffened supercavitating underwater vehicles [J]. Journal of Vibration and Control, 2004, 10(2): 243–267. DOI: 10.1177/1077546304035607.
    [2]
    PUTILIN S I. Some features of a supercavitating model dynamics [J]. International Journal of Fluid Mechanics Research, 2001, 28(5): 28–40. DOI: 10.1615/InterJFluidMechRes.v28.i5.40.
    [3]
    PUTILIN S I. Stability of supercavitating slender body during water entry and underwater motion[C]// France Grenob: CAV1998 Conference, 1998.
    [4]
    KULKARNI S S, PRATAP R. Studies on the dynamics of a supercavitating projectile [J]. Applied Mathematical Modelling, 2000, 24(2): 113–129. DOI: 10.1016/S0307-904X(99)00028-1.
    [5]
    陈伟善, 郭则庆, 刘如石, 等. 空化器形状对超空泡射弹尾拍运动影响的数值研究 [J]. 工程力学, 2020, 37(4): 248–256.

    CHEN W S, GUO Z Q, LIU R S, et al. Numerical simulation on the influence of cavitator shapes on the tail-slap of supercavitating projectiles [J]. Engineering Mechanics, 2020, 37(4): 248–256.
    [6]
    赵成功, 王聪, 魏英杰, 等. 质心位置对超空泡射弹尾拍运动影响分析 [J]. 北京航空航天大学学报, 2014, 40(12): 1754–1760.

    ZHAO C G, WANG C, WEI Y J, et al. Analysis of the effect of mass center position on tail-slap of supercavitating projectile [J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(12): 1754–1760.
    [7]
    赵成功, 王聪, 孙铁志, 等. 初始扰动对射弹尾拍运动及运动特性影响分析 [J]. 哈尔滨工业大学学报, 2016, 48(10): 71–76.

    ZHAO C G, WANG C, SUN T Z, et al. Analysis of tail-slapping and ballistic characteristics of supercavitating projectiles under different initial disturbances [J]. Journal of Harbin Institute of Technology, 2016, 48(10): 71–76.
    [8]
    何乾坤, 魏英杰, 尤天庆, 等. 空泡摆动对超空泡航行体尾拍影响分析 [J]. 北京航空航天大学学报, 2012, 38(4): 509–512, 518.

    HE Q K, WEI Y J, YOU T Q, et al. Analysis of tail-slaps of supercavitating vehicle influenced by distortion of cavity shape [J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(4): 509–512, 518.
    [9]
    姚忠, 王瑞, 祁晓斌, 等. 初始扰动对高速射弹尾拍过程流体动力特性与运动特性的影响 [J]. 兵工学报, 2020, 41(S1): 46–53.

    YAO Z, WANG R, QI X B, et al. The influence of initial disturbance on the hydrodynamic and ballistic characteristics of high-speed projectile during tail-slapping [J]. Acta Armamentarii, 2020, 41(S1): 46–53.
    [10]
    王晓辉, 孙士明, 季锦梁, 等. 基于耦合欧拉-拉格朗日方法的射弹高速入水尾拍数值分析 [J]. 兵工学报, 2020, 41(S1): 110–115.

    WANG X H, SUN S M, JI J L, et al. Numerical Analysis of tail-slapping of projectile in process of high-speed water-entry based on coupled eulerian-lagrangian method [J]. Acta Armamentarii, 2020, 41(S1): 110–115.
    [11]
    孙士明, 颜开, 褚学森, 等. 射弹高速斜入水过程的数值仿真 [J]. 兵工学报, 2020, 41(S1): 122–127.

    SUN S M, YAN K, CHU X S, et al. Numerical simulation of high-speed oblique water entry of a projectile [J]. Acta Armamentarii, 2020, 41(S1): 122–127.
    [12]
    孟庆昌, 张志宏, 顾建农, 等. 超空泡射弹尾拍分析与计算 [J]. 爆炸与冲击, 2009, 29(1): 56–60. DOI: 10.11883/1001-1455(2009)01-0056-05.

    MENG Q C, ZHANG Z H, GU J N, et al. Analysis and calculation of the tail-slaps of supercavitating projectile [J]. Explosion and Shock Waves, 2009, 29(1): 56–60. DOI: 10.11883/1001-1455(2009)01-0056-05.
    [13]
    RAND R, PRATAP R, RAMANI D, et al. Impact dynamics of a supercavitating underwater projectile[C]// International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 1997.
    [14]
    WANG K, RONG G, MU Q, et al. Double slapping effects on a supercavitation projectile [J]. AIP Advances, 2019, 9(1): 015104. DOI: 10.1063/1.5053143.
    [15]
    曹伟, 王聪, 魏英杰, 等. 自然超空泡形态特性的射弹试验研究 [J]. 工程力学, 2006(12): 175–179, 187.

    CAO W, WANG C, WEI Y J, et al. High-speed projectile experimental investigations on the characteristics of natural supercaviation [J]. Engineering Mechanics, 2006(12): 175–179, 187.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views (426) PDF downloads(109) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return