Volume 43 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
HU Pingchao, LI Tao, LIU Cangli, FU Hua. Effect of initial void ratio on phase transition of confined HMX-based PBX-3 under slow cook-off[J]. Explosion And Shock Waves, 2023, 43(6): 062301. doi: 10.11883/bzycj-2022-0489
Citation: HU Pingchao, LI Tao, LIU Cangli, FU Hua. Effect of initial void ratio on phase transition of confined HMX-based PBX-3 under slow cook-off[J]. Explosion And Shock Waves, 2023, 43(6): 062301. doi: 10.11883/bzycj-2022-0489

Effect of initial void ratio on phase transition of confined HMX-based PBX-3 under slow cook-off

doi: 10.11883/bzycj-2022-0489
  • Received Date: 2022-11-03
  • Rev Recd Date: 2023-03-16
  • Available Online: 2023-03-23
  • Publish Date: 2023-06-05
  • In order to understand the effect of initial void ratio on the thermal phase transformation and ignition response characteristics of HMX-based PBX-3 under slow cook-off condition, a series of experiments were designed and conducted on the confined PBX-3 explosives with the initial void ratios of 1.0%, 4.2% and 13.8%. In each test, the PBX-3 sample composed of two cylindrical pieces of explosive, 25 mm in diameter and 10 mm in height for each, was prepared. The temperature was monitored by the five small-size type-K thermocouples, 0.25 mm in width and 0.15 mm in thickness for each, among which four were arranged at the different positions in the interior of the PBX-3 and one was positioned on the surface of the shell. The experimental apparatus was positioned in a slow cook-off chamber with a transparent glass cover. The slow cook-off setup was heated to 150 ℃ within 30 minutes, followed by a 45-minute soak at 150 ℃, and then heated at 0.25 ℃/min until thermal explosion occurred. During the process, the temperatures at different locations inside the explosive and at the surface of the shell were acquired. The process of the HMX phase transition, the mechanisms exhibiting the effect of the initial void ratio on the HMX phase transition and the effect of the HMX phase transition process on the thermal explosion temperature were analyzed in detail. The result shows that the lower the initial void ratio is, the higher the thermal stress the PBX-3 is subjected to when it is heated to the HMX phase transition temperature, which delays the transformation process of β-HMX into δ-HMX during the slow cook-off. Due to the higher thermal sensitivity of δ-HMX, the longer the phase transition process of HMX in the slow cook-off is, the slower the heat accumulation resulting from the δ-HMX exothermic decomposition reaction, and the higher the temperature of the confined shell at the time of thermal explosion.
  • loading
  • [1]
    田勇, 李敬明. 弹药安全的新发展: 安全弹药刍议 [J]. 含能材料, 2017, 25(2): 91–93. DOI: 10.11943/j.issn.1006-9941.2017.02.00X.

    TIAN Y, LI J M. New development of ammunition safety: robust munitions [J]. Chinese Journal of Energetic Materials, 2017, 25(2): 91–93. DOI: 10.11943/j.issn.1006-9941.2017.02.00X.
    [2]
    戴湘晖, 王可慧, 沈子楷, 等. 侵彻弹体快速烤燃安全特性实验研究 [J]. 爆炸与冲击, 2020, 40(9): 092301. DOI: 10.11883/bzycj/2020-0016.

    DAI X H, WANG K H, SHEN Z K, et al. Experiment of fast cook-off safety characteristic for penetrator [J]. Explosion and Shock Waves, 2020, 40(9): 092301. DOI: 10.11883/bzycj/2020-0016.
    [3]
    戴湘晖, 段建, 沈子楷, 等. 侵彻弹体慢速烤燃响应特性实验研究 [J]. 兵工学报, 2020, 41(2): 291–297. DOI: 10.3969/j.issn.1000-1093.2020.02.010.

    DAI X H, DUAN J, SHEN Z K, et al. Experiment of slow cook-off response characteristics of penetrator [J]. Acta Armamentarii, 2020, 41(2): 291–297. DOI: 10.3969/j.issn.1000-1093.2020.02.010.
    [4]
    沈飞, 王胜强, 王辉. 不同约束条件下HMX基含铝炸药的慢烤响应特性 [J]. 火炸药学报, 2019, 42(4): 385–390. DOI: 10.14077/j.issn.1007-7812.2019.04.012.

    SHEN F, WANG S Q, WANG H. Slow cook-off response characteristics of HMX-based aluminized explosive under different constraint conditions [J]. Chines Journal of Explosive and Propellants, 2019, 42(4): 385–390. DOI: 10.14077/j.issn.1007-7812.2019.04.012.
    [5]
    沈飞, 王胜强, 王辉. HMX基含铝炸药装药慢烤缓释结构设计及验证 [J]. 含能材料, 2019, 27(10): 861–866. DOI: 10.11943/CJEM2018273.

    SHEN F, WANG S Q, WANG H. Slow release structure design and verification of HMX-based aluminized explosive charge under slow cook-off condition [J]. Chinese Journal of Energetic Materials, 2019, 27(10): 861–866. DOI: 10.11943/CJEM2018273.
    [6]
    WEESE R K, BURNHAM A K. Coefficient of thermal expansion of the beta and delta polymorphs of HMX [J]. Propellants, Explosives, Pyrotechnics, 2005, 30(5): 344–350. DOI: 10.1002/prep.200500024.
    [7]
    HERRMANN M, ENGEL W, EISENREICH N. Thermal expansion, transitions, sensitivities and burning rates of HMX [J]. Propellants, Explosives, Pyrotechnics, 1992(17): 190–195. DOI: 10.1002/prep.19920170409.
    [8]
    URTIEW P A, FORBES J W, TARVER C M, et al. Shock sensitivity of LX-04 containing delta phase HMX at elevated temperatures [J]. AIP Conference Proceedings, 2004, 706(1): 1053–1056. DOI: 10.1063/1.1780419.
    [9]
    KANESHIGE M J, RENLUND A M, SCHMITT R G, et al. Cook-off experiments for model validation at Sandia National Labortories [C]//Proceeding of the 12th International Detonation Symposium. San Diego, California, USA: Office of Naval Research, 2002: 1181–1190.
    [10]
    WARDELL J F, MAIENSCHEIN J L. The scaled thermal explosion experiment [C]//Proceedings of the 12th International Conference Symposium. San Diego, California, USA: U.S. Department of Energy, 2002.
    [11]
    WILLEY T M, LAUDERBACH L, GAGLIARDI F, et al. The mesoscale evolution of voids in HMX-based explosives during heating through the β-δ phase transition [C]//Proceeding of the 15th International Detonation Symposium. 2014: 1266–1270.
    [12]
    PETERSON P D, MANG J T, ASAY B W. Quantitative analysis of damage in an octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazonic-based composite explosive subjected to a linear thermal gradient [J]. Journal of Applied Physics, 2005, 97: 093507. DOI: 10.1063/1.1879072.
    [13]
    TAPPAN A S, RENLUND A M, GIESKE J H, et al. Raman spectroscopic and ultrasonic measurements to monitor the HMX β-δ phase transition: SAND99-2667C [R]// Office of Scientific & Technical Information Technical Reports. San Diego, California, USA: Office of Scientific and Technical Information, U.S. Department of Energy, 1999.
    [14]
    BOWLAN P, SMILOWITZ L, HENSON B F, et al. Study of the kinetics of solid-solid phase transitions in HMX [J]. AIP Conference Proceedings, 2018, 1979(1): 150005. DOI: 10.1063/1.5044961.
    [15]
    HENSON B F, SMILOWITZ L, ASAY B W, et al. The β-δ phase transition in the energetic nitramine octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine: thermodynamics [J]. Journal of Chemical Physics, 2002, 117(8): 3780–3788. DOI: 10.1063/1.1495398.
    [16]
    RENLUND A M , TAPPAN A S , MILLER J C . LDRD final report : Raman spectroscopic measurements to monitor the HMX beta-delta phase transition: SAND2000-2927 [R]. Albuquerque, New Mexico, USA: Sandia National Laboratories, 2000. DOI: 10.2172/975257.
    [17]
    HOBBS M L, KANESHIGE M J, ERIKSON W W. Modeling the measured effect of a nitroplasticizer (BDNPA/F) on cookoff of a plastic bonded explosive (PBX 9501) [J]. Combustion and Flame, 2016, 173: 132–150. DOI: 10.1016/j.combustflame.2016.08.014.
    [18]
    胡惟佳, 吴艳青, 黄风雷. 烤燃作用下的HMX单晶各向异性力学响应及相变 [J]. 含能材料, 2018, 26(1): 86–93. DOI: 10.11943/j.issn.1006-9941.2018.01.011.

    HU W J, WU Y Q, HUANG F L. Anisotropic mechanical response and phase transition of cooked HMX [J]. Chinese Journal of Energetic Materials, 2018, 26(1): 86–93. DOI: 10.11943/j.issn.1006-9941.2018.01.011.
    [19]
    马欣, 陈朗, 鲁峰, 等. 烤燃条件下HMX/TATB基混合炸药多步热分解反应计算 [J]. 爆炸与冲击, 2014, 34(1): 67–74. DOI: 10.11883/1001-1455(2014)01-0067-08.

    MA X, CHEN L, LU F, et al. Calculation on multi-step thermal decomposition of HMX-and TATB-based composite explosive under cook-off conditions [J]. Explosion and Shock Waves, 2014, 34(1): 67–74. DOI: 10.11883/1001-1455(2014)01-0067-08.
    [20]
    肖游, 智小琦, 王琦, 等. 多种复合炸药装药的慢烤特性及其机理 [J]. 高压物理学报, 2022, 36(2): 025201. DOI: 10.11858/gywlxb.20210871.

    XIAO Y, ZHI X Q, WANG Q, et al. Characteristics and mechanism of slow cook-off of composite explosive charges [J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 025201. DOI: 10.11858/gywlxb.20210871.
    [21]
    NICHOLS A L. Coupled thermal/chemical/mechanical modeling of insensitive explosives in thermal environments: UCRL-JC-117237-Rev-1 [R]. 1995.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (311) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return