Volume 44 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
CUI Shitang, ZHAO Hongyu, DONG Fangdong, ZHANG Yongliang. Effect of phase transformation on wave speeds in TiNi alloy thin-walled tube[J]. Explosion And Shock Waves, 2024, 44(9): 091425. doi: 10.11883/bzycj-2023-0368
Citation: CUI Shitang, ZHAO Hongyu, DONG Fangdong, ZHANG Yongliang. Effect of phase transformation on wave speeds in TiNi alloy thin-walled tube[J]. Explosion And Shock Waves, 2024, 44(9): 091425. doi: 10.11883/bzycj-2023-0368

Effect of phase transformation on wave speeds in TiNi alloy thin-walled tube

doi: 10.11883/bzycj-2023-0368
  • Received Date: 2023-08-30
  • Rev Recd Date: 2024-05-10
  • Available Online: 2024-05-14
  • Publish Date: 2024-09-20
  • Shape memory alloys undergo phase transformation under strong impact loads, and the phase transformation has a significant impact on the dynamic mechanical response of their structural components. Based on the phase transformation critical criterion considering both hydrostatic pressure and deviatoric stress effects, an incremental constitutive model of phase transformation is derived. The analytical expression of characteristic wave speed under complex stress state is obtained based on the generalized characteristic theory. The characteristic wave speed is not only related to the mechanical parameters of the material itself (such as the tension-compression asymmetry and the modulus of the mixed phase), but also related to the stress state of the material. For TiNi alloys with volume expansion due to phase transformation, the increase of tensile-compressive asymmetry coefficient will increase the wave speed of slow waves, while having almost no effect on fast waves. At the short axis of the phase transformation ellipse (α = 90°), the wave speed of slow waves is the lowest and decreases significantly with the increase of the dimensionless modulus of the mixed phase. When the dimensionless modulus of the mixed phase increases from 2 to 5, the wave speed decreases by 36.2%, while the wave speed of fast waves reaches the maximum value c0, which is independent of the modulus of the mixed phase; at the long axis of the phase transformation ellipse (α = 180°), the speed of slow waves reaches the maximum value, and the wave speed of fast waves reaches the minimum value c2.
  • loading
  • [1]
    BANCROFT D, PETERSON E L, MINSHALL S. Polymorphism of iron at high pressure [J]. Journal of Applied Physics, 1956, 27(3): 291–298. DOI: 10.1063/1.1722359.
    [2]
    GUIDA M, SELLITTO A, MARULO F, et al. Analysis of the impact dynamics of shape memory alloy hybrid composites for advanced applications [J]. Materials, 2019, 12(1): 153. DOI: 10.3390/ma12010153.
    [3]
    GUPTA A K, VELMURUGAN R, JOSHI M, et al. Studies on shape memory alloy-embedded GFRP composites for improved post-impact damage strength [J]. International Journal of Crashworthiness, 2019, 24(4): 363–379. DOI: 10.1080/13588265.2018.1452549.
    [4]
    唐志平. 相变应力波 [M]. 北京: 科学出版社, 2022: 194–247.

    TANG Z P. Stress waves with phase transition [M]. Beijing: Science Press, 2022: 194–247.
    [5]
    CHEN Y C, LAGOUDAS D C. Impact induced phase transformation in shape memory alloys [J]. Journal of the Mechanics and Physics of Solids, 2000, 48(2): 275–300. DOI: 10.1016/S0022-5096(99)00044-7.
    [6]
    BEKKER A, JIMENEZ-VICTORY J C, POPOV P, et al. Impact induced propagation of phase transformation in a shape memory alloy rod [J]. International Journal of Plasticity, 2002, 18(11): 1447–1479. DOI: 10.1016/S0749-6419(02)00025-6.
    [7]
    王文强, 唐志平. 冲击下宏观相边界的传播 [J]. 爆炸与冲击, 2000, 20(1): 25–31. DOI: 10.3321/j.issn:1001-1455.2000.01.005.

    WANG W Q, TANG Z P. Propagation of macroscopic phase boundary under shock loading [J]. Explosion and Shock Waves, 2000, 20(1): 25–31. DOI: 10.3321/j.issn:1001-1455.2000.01.005.
    [8]
    TANG Z P, GUPTA Y M. Shock-induced phase transformation in cadmium sulfide dispersed in an elastomer [J]. Journal of Applied Physics, 1988, 64(4): 1827–1837. DOI: 10.1063/1.341782.
    [9]
    TANG Z P, DAI X. A preparation method of functionally graded materials with phase transition under shock loading [J]. Shock Waves, 2006, 15(6): 447–452. DOI: 10.1007/s00193-006-0048-8.
    [10]
    DAI X Y, TANG Z P, XU S L, et al. Propagation of macroscopic phase boundaries under impact loading [J]. International Journal of Impact Engineering, 2004, 30(4): 385–401. DOI: 10.1016/s0734-743x(03)00090-3.
    [11]
    NIEMCZURA J, RAVI-CHANDAR K. Dynamics of propagating phase boundaries in NiTi [J]. Journal of the Mechanics and Physics of Solids, 2006, 54(10): 2136–2161. DOI: 10.1016/j.jmps.2006.04.003.
    [12]
    ZHU P P, DAI H H. Wave propagation in a shape memory alloy bar under an impulsive loading [J]. Journal of Applied Mechanics, 2016, 83(10): 104502. DOI: 10.1115/1.4034115.
    [13]
    LIU Y G, SHEN L Y, CHEN Y J, et al. Thermomechanical coupling effect on the phase transition wave propagation in an SMA TiNi bar subjected to shock loading [J]. International Journal of Mechanical Sciences, 2022, 235: 107710. DOI: 10.1016/j.ijmecsci.2022.107710.
    [14]
    PLIETSCH R, EHRLICH K. Strength differential effect in pseudoelastic NiTi shape memory alloys [J]. Acta Materialia, 1997, 45(6): 2417–2424. DOI: 10.1016/S1359-6454(96)00354-0.
    [15]
    ORGÉAS L, FAVIER D. Stress-induced martensitic transformation of a NiTi alloy in isothermal shear, tension and compression [J]. Acta Materialia, 1998, 46(15): 5579–5591. DOI: 10.1016/S1359-6454(98)00167-0.
    [16]
    LEXCELLENT C, BLANC P. Phase transformation yield surface determination for some shape memory alloys [J]. Acta Materialia, 2004, 52(8): 2317–2324. DOI: 10.1016/j.actamat.2004.01.022.
    [17]
    GRABE C, BRUHNS O T. Path dependence and multiaxial behavior of a polycrystalline NiTi alloy within the pseudoelastic and pseudoplastic temperature regimes [J]. International Journal of Plasticity, 2009, 25(3): 513–545. DOI: 10.1016/j.ijplas.2008.03.002.
    [18]
    MEHRABI R, ANDANI M T, KADKHODAEI M, et al. Experimental study of NiTi thin-walled tubes under uniaxial tension, torsion, proportional and non-proportional loadings [J]. Experimental Mechanics, 2015, 55(6): 1151–1164. DOI: 10.1007/s11340-015-0016-2.
    [19]
    WANG X M, ZHOU Q T, LIU H, et al. Experimental study of the biaxial cyclic behavior of thin-wall Tubes of NiTi shape memory alloys [J]. Metallurgical and Materials Transactions A, 2012, 43(11): 4123–4128. DOI: 10.1007/s11661-012-1225-2.
    [20]
    FARAJPOUR M R, SHAHIDI A R, FARAJPOUR A. A nonlocal continuum model for the biaxial buckling analysis of composite nanoplates with shape memory alloy nanowires [J]. Materials Research Express, 2018, 5(3): 035026. DOI: 10.1088/2053-1591/aab3a9.
    [21]
    SITTNER P, HARA Y, TOKUDA M. Experimental study on the thermoelastic martensitic transformation in shape memory alloy polycrystal induced by combined external forces [J]. Metallurgical and Materials Transactions A, 1995, 26(11): 2923–2935. DOI: 10.1007/bf02669649.
    [22]
    SUN Q P, LI Z Q. Phase transformation in superelastic NiTi polycrystalline micro-tubes under tension and torsion–from localization to homogeneous deformation [J]. International Journal of Solids and Structures, 2002, 39(13/14): 3797–3809. DOI: 10.1016/S0020-7683(02)00182-8.
    [23]
    SONG Q Z, TANG Z P. Combined stress waves with phase transition in thin-walled tubes [J]. Applied Mathematics and Mechanics, 2014, 35(3): 285–296. DOI: 10.1007/s10483-014-1791-7.
    [24]
    宋卿争. 复合加载下NiTi合金力学特性和相变波的研究 [D]. 合肥: 中国科学技术大学, 2014: 95–120.

    SONG Q Z. Mechanical properties and phase transition waves of NiTi alloy under combined stresses [D]. Hefei: University of Science and Technology of China, 2014: 95–120.
    [25]
    WANG B, TANG Z P. Study on the propagation of coupling shock waves with phase transition under combined tension-torsion impact loading [J]. Science China Physics, Mechanics & Astronomy, 2014, 57(10): 1977–1986. DOI: 10.1007/s11433-014-5468-3.
    [26]
    王波. 相变材料及聚合物中的复合应力波研究 [D]. 合肥: 中国科学技术大学, 2017: 23–41.

    WANG B. Research on stress waves of phase transition material and polymer under combined stress [D]. Hefei: University of Science and Technology of China, 2017: 23–41.
    [27]
    CUI S T, LIANG L L. Influence of phase transformation on stress wave propagation in thin-walled tubes [J]. Waves in Random and Complex Media. DOI: 10.1080/17455030.2022.2164631.
    [28]
    LAGOUDAS D C. Shape memory alloys: modeling and engineering applications [M]. New York: Springer, 2008.
    [29]
    李永池. 波动力学 [M]. 合肥: 中国科学技术大学出版社, 2015: 210–223.

    LI Y C. Wave mechanics [M]. Hefei: China University of Science and Technology Press, 2015: 210–223.
    [30]
    AURICCHIO F, PETRINI L. A three-dimensional model describing stress-temperature induced solid phase transformations: thermomechanical coupling and hybrid composite applications [J]. International Journal for Numerical Methods in Engineering, 2004, 61(5): 716–737. DOI: 10.1002/nme.1087.
    [31]
    QIDWAI M A, LAGOUDAS D C. On thermomechanics and transformation surfaces of polycrystalline NiTi shape memory alloy material [J]. International Journal of Plasticity, 2000, 16(10/11): 1309–1343. DOI: 10.1016/S0749-6419(00)00012-7.
    [32]
    郭扬波, 唐志平, 徐松林. 一种考虑静水压力和偏应力共同作用的相变临界准则 [J]. 固体力学学报, 2004, 25(4): 417–422. DOI: 10.3969/j.issn.0254-7805.2004.04.009.

    GUO Y B, TANG Z P, XU S L. A critical criterion for phase transformation considering both hydrostatic pressure and deviatoric stress effects [J]. Acta Mechanica Solida Sinica, 2004, 25(4): 417–422. DOI: 10.3969/j.issn.0254-7805.2004.04.009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (130) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return