Volume 44 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
LI Zhiwen, LI Qian, XU Bin, LI Xiaofeng, LI Haibo. Research on the dynamic response of shallow-buried circular non-complete bonded tunnels under anti-plane line source loading[J]. Explosion And Shock Waves, 2024, 44(8): 081423. doi: 10.11883/bzycj-2023-0454
Citation: LI Zhiwen, LI Qian, XU Bin, LI Xiaofeng, LI Haibo. Research on the dynamic response of shallow-buried circular non-complete bonded tunnels under anti-plane line source loading[J]. Explosion And Shock Waves, 2024, 44(8): 081423. doi: 10.11883/bzycj-2023-0454

Research on the dynamic response of shallow-buried circular non-complete bonded tunnels under anti-plane line source loading

doi: 10.11883/bzycj-2023-0454
  • Received Date: 2023-12-19
  • Rev Recd Date: 2024-04-16
  • Available Online: 2024-04-19
  • Publish Date: 2024-08-05
  • The scattering of seismic waves by shallow-buried underground structures has significant theoretical value in the engineering field. However, previous studies have mainly focused on the case of plane waves or the case of complete bonding between lining and surrounding rock, with little consideration of the effects of source distance and non-complete bonding between lining and surrounding rock. In order to deepen the understanding of the influence of source distance and non-complete bonding on seismic wave scattering, the series solution of the dynamic response of shallow-buried circular non-complete bonded tunnels under the loading of anti-plane line source was derived based on the displacement discontinuity model, wave function expansion method, Graf formula and mirror method. The accuracy of the obtained solution was verified by the relationship between the residuals of the inner and outer boundary conditions of the lining and the number of truncated terms in the series solution. By systematically analyzing the parameters of this series solution, the influence of factors such as the contact stiffness between lining and surrounding rock, lining modulus, lining thickness, tunnel depth and source distance on the displacement and circumferential shear stress on the inner surface of the lining was discussed. The results show that the contact stiffness between lining and surrounding rock has a significant influence on the dynamic response of the tunnel, especially in cases with relatively low contact stiffness, where the amplitude of the dynamic response of the tunnel can be very large. Increasing the lining modulus reduces the displacement but increases the circumferential shear stress. Increasing the lining thickness can simultaneously reduce the displacement and circumferential shear stress. As the tunnel depth increases, the maximum displacement and circumferential shear stress on the inner surface of the lining shifts towards the apex of the tunnel. Increasing the horizontal distance between the line source and the tunnel increases the relative amplitude of the tunnel's back wave side.
  • loading
  • [1]
    LEE V W. On deformations near circular underground cavity subjected to incident plane SH waves [C]// Proceedings of the Application of Computer Methods in Engineering Conference. Los Angeles, 1977: 951–962.
    [2]
    LEE V W, TRIFUNAC M D. Response of tunnels to incident SH-waves [J]. Journal of the Engineering Mechanics Division, 1979, 105(4): 643–659. DOI: 10.1061/JMCEA3.0002511.
    [3]
    李海波, 马行东, 李俊如, 等. 地震荷载作用下地下岩体洞室位移特征的影响因素分析 [J]. 岩土工程学报, 2006, 28(3): 358–362. DOI: 10.3321/j.issn:1000-4548.2006.03.015.

    LI H B, MA X D, LI J R, et al. Study on influence factors of rock cavern displacement under earthquake [J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 358–362. DOI: 10.3321/j.issn:1000-4548.2006.03.015.
    [4]
    XIA X, LI H B, LIU Y Q, et al. A case study on the cavity effect of a water tunnel on the ground vibrations induced by excavating blasts [J]. Tunnelling and Underground Space Technology, 2018, 71: 292–297. DOI: 10.1016/j.tust.2017.08.026.
    [5]
    袁晓铭. 地表下圆形夹塞区出平面散射对地面运动的影响 [J]. 地球物理学报, 1996, 39(3): 373–381. DOI: 10.3321/j.issn:0001-5733.1996.03.011.

    YUAN X M. Effect of a circular underground inclusion on surface motion under incident plane SH waves [J]. Acta Geophysica Sinica, 1996, 39(3): 373–381. DOI: 10.3321/j.issn:0001-5733.1996.03.011.
    [6]
    刘殿魁, 林宏. 浅埋的圆柱形孔洞对SH波的散射与地震动 [J]. 爆炸与冲击, 2003, 23(1): 6–12. DOI: 10.3321/j.issn:1001-1455.2003.01.002.

    LIU D K, LIN H. Scattering of SH-waves by a shallow buried cylindrical cavity and the ground motion [J]. Explosion and Shock Waves, 2003, 23(1): 6–12. DOI: 10.3321/j.issn:1001-1455.2003.01.002.
    [7]
    王国庆, 刘殿魁. SH波对浅埋相邻多个圆孔作用的动力分析 [J]. 哈尔滨工程大学学报, 2003, 24(1): 108–113. DOI: 10.3969/j.issn.1006-7043.2003.01.026.

    WANG G X, LIU D K. Dynamic analysis for effect of SH-wave on shallow fill multiple circular cavities [J]. Journal of Harbin Engineering University, 2003, 24(1): 108–113. DOI: 10.3969/j.issn.1006-7043.2003.01.026.
    [8]
    陈志刚, 刘殿魁. SH波冲击下浅埋任意形孔洞的动力分析 [J]. 地震工程与工程振动, 2004, 24(4): 32–36. DOI: 10.3969/j.issn.1000-1301.2004.04.006.

    CHEN Z G, LIU D K. Dynamic response on a shallowly buried cavity of arbitrary shape impacted by vertical SH-wave [J]. Earthquake Engineering and Engineering Vibration, 2004, 24(4): 32–36. DOI: 10.3969/j.issn.1000-1301.2004.04.006.
    [9]
    陈志刚. 各向异性半空间中浅埋孔洞对地表反平面运动的影响 [J]. 地震学报, 2015, 37(4): 617–628. DOI: 10.11939/jass.2015.04.008.

    CHEN Z G. Effect of shallow buried cavity on anti-plane motion of ground surface in anisotropic half-space [J]. Acta Seismologica Sinica, 2015, 37(4): 617–628. DOI: 10.11939/jass.2015.04.008.
    [10]
    李敏, 刘殿魁, 周瑞芬. 含孔半圆形凸起地形及多个孔洞对SH波的散射 [J]. 哈尔滨工程大学学报, 2008, 29(1): 78–84. DOI: 10.3969/j.issn.1006-7043.2008.01.016.

    LI M, LIU D K, ZHOU R F. Scattering of SH-waves by a semi-cylindrical hill with a hole and multiple cavities around it in half-space [J]. Journal of Harbin Engineering University, 2008, 29(1): 78–84. DOI: 10.3969/j.issn.1006-7043.2008.01.016.
    [11]
    刘刚, 刘殿魁. SH波入射时浅埋圆孔附近等腰三角形凸起地形的地震动 [J]. 固体力学学报, 2007, 28(1): 60–66. DOI: 10.3969/j.issn.0254-7805.2007.01.011.

    LIU G, LIU D K. The ground motion of an isosceles triangular hill above a subsurface cavity with incident SH-waves [J]. Acta Mechanica Solida Sinica, 2007, 28(1): 60–66. DOI: 10.3969/j.issn.0254-7805.2007.01.011.
    [12]
    齐辉, 赵春香, 黄敏. 出平面线源荷载作用下半空间内浅埋圆孔对半圆形凸起的圆柱形弹性夹杂的动力影响 [J]. 振动与冲击, 2013, 32(17): 109–112,122. DOI: 10.3969/j.issn.1000-3835.2013.17.021.

    QI H, ZHAO C X, HUANG M. Dynamic effect of a subsurface cavity in half space under out-of-plane line source load on a cylindrical elastic inclusion with a semi-cylindrical hill [J]. Journal of Vibration and Shock, 2013, 32(17): 109–112,122. DOI: 10.3969/j.issn.1000-3835.2013.17.021.
    [13]
    GAO Y F, DAI D H, ZHANG N, et al. Scattering of plane and cylindrical SH waves by a horseshoe shaped cavity [J]. Journal of Earthquake and Tsunami, 2017, 11(2): 1650011. DOI: 10.1142/s1793431116500111.
    [14]
    CHEN X, ZHANG N, GAO Y F, et al. Effects of a V-shaped canyon with a circular underground structure on surface ground motions under SH wave propagation [J]. Soil Dynamics and Earthquake Engineering, 2019, 127: 105830. DOI: 10.1016/j.soildyn.2019.105830.
    [15]
    ZHANG X P, JIANG Y J, CHEN L J, et al. Anti-plane seismic performance of a shallow-buried tunnel with imperfect interface in anisotropic half-space [J]. Tunnelling and Underground Space Technology, 2021, 112: 103906. DOI: 10.1016/j.tust.2021.103906.
    [16]
    LEE V W, KARL J. Diffraction of SV waves by underground, circular, cylindrical cavities [J]. Soil Dynamics and Earthquake Engineering, 1992, 11(8): 445–456. DOI: 10.1016/0267-7261(92)90008-2.
    [17]
    梁建文, 张浩, LEE V W. 地下洞室群对地面运动影响问题的级数解答—P波入射 [J]. 地震学报, 2004, 26(3): 269–280. DOI: 10.3321/j.issn:0253-3782.2004.03.006.

    LIANG J W, ZHANG H, LEE V W. A series solution for surface motion amplification due to underground group cavities—incident P waves [J]. Acta Seismologica Sinica, 2004, 26(3): 269–280. DOI: 10.3321/j.issn:0253-3782.2004.03.006.
    [18]
    LIANG J W, ZHANG H, LEE V W. A series solution for surface motion amplification due to underground twin tunnels: incident SV waves [J]. Earthquake Engineering and Engineering Vibration, 2003, 2(2): 289–298. DOI: 10.1007/s11803-003-0012-x.
    [19]
    MEI W Q, XIA Y Y, HAN G S, et al. Theoretical responses of shallow-buried circular cavity subjected to transient P wave [J]. Computers and Geotechnics, 2021, 139: 104411. DOI: 10.1016/j.compgeo.2021.104411.
    [20]
    LIN C H, LEE V W, TODOROVSKA M I, et al. Zero-stress, cylindrical wave functions around a circular underground tunnel in a flat, elastic half-space: incident P-waves [J]. Soil Dynamics and Earthquake Engineering, 2010, 30(10): 879–894. DOI: 10.1016/j.soildyn.2010.01.010.
    [21]
    LIU Q J, ZHAO M J, WANG L H. Scattering of plane P, SV or Rayleigh waves by a shallow lined tunnel in an elastic half space [J]. Soil Dynamics and Earthquake Engineering, 2013, 49: 52–63. DOI: 10.1016/j.soildyn.2013.02.007.
    [22]
    LUCO J E, DE BARROS F C P. Dynamic displacements and stresses in the vicinity of a cylindrical cavity embedded in a half-space [J]. Earthquake Engineering & Structural Dynamics, 1994, 23(3): 321–340. DOI: 10.1002/eqe.4290230307.
    [23]
    LIU Q J, YUE C, ZHAO M J. Scattering of harmonic P1 and SV waves by a shallow lined circular tunnel in a poroelastic half-plane [J]. Soil Dynamics and Earthquake Engineering, 2022, 158: 107306. DOI: 10.1016/j.soildyn.2022.107306.
    [24]
    SON M, CORDING E J. Ground–liner interaction in rock tunneling [J]. Tunnelling and Underground Space Technology, 2007, 22(1): 1–9. DOI: 10.1016/j.tust.2006.03.002.
    [25]
    ACHENBACH J D. Wave propagation in elastic solids [M]. Amsterdam: Elsevier, 1973. DOI: 10.1016/c2009-0-08707-8.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (148) PDF downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return