Citation: | ZHANG Beibei, CHENG Yangfan, JIANG Bayun, SHEN Zhaowu, GAN Xiaohong. Influence of typical metal powders on the shock wave effect and thermal damage performance of FAE[J]. Explosion And Shock Waves, 2024, 44(10): 101408. doi: 10.11883/bzycj-2023-0465 |
[1] |
昝文涛, 洪滔, 董贺飞. 铝粉尘云团爆轰温压效应的数值模拟 [J]. 兵工学报, 2018, 39(1): 101–110. DOI: 10.3969/j.issn.1000-1093.2018.01.011.
ZAN W T, HONG T, DONG H F. Numerical simulation of detonation temperature and pressure effects of aluminum powder cloud [J]. Acta Armamentarii, 2018, 39(1): 101–110. DOI: 10.3969/j.issn.1000-1093.2018.01.011.
|
[2] |
刘文杰, 白春华, 刘庆明, 等. 高挥发性液体传质速率机理和实验研究 [J]. 兵工学报, 2020, 41(6): 1123–1130. DOI: 10.3969/j.issn.1000-1093.2020.06.008.
LIU W J, BAI C H, LIU Q M, et al. Mechanism and experimental study of high volatile liquid mass transfer rate [J]. Acta Armamentarii, 2020, 41(6): 1123–1130. DOI: 10.3969/j.issn.1000-1093.2020.06.008.
|
[3] |
程扬帆, 王中华, 胡芳芳, 等. TiH2粉尘火焰传播速度及温度分布的高速二维测量 [J]. 兵工学报, 2023, 44(4): 1181–1192. DOI: 10.12382/bgxb.2021.0842.
CHENG Y F, WANG Z H, HU F F, et al. High-speed two-dimensional measurements of flame propagation velocity and temperature distribution of TiH2 dust flame [J]. Acta Armamentarii, 2023, 44(4): 1181–1192. DOI: 10.12382/bgxb.2021.0842.
|
[4] |
LIU G, HOU F, CAO B, et al. Experimental study of fuel-air explosive [J]. Combustion, Explosion, and Shock Waves, 2008, 44(2): 213–217. DOI: 10.1007/s10573-008-0028-7.
|
[5] |
ZHANG C, BAI C H, REN J F, et al. The promotion of nitromethane on solid-liquid fuel/air mixtures explosion characteristics under different ambient conditions [J]. Fuel, 2022, 322: 124190. DOI: 10.1016/j.fuel.2022.124190.
|
[6] |
WAN H W, WEN Y Q, ZHANG Q. Explosion behaviors of vapor-liquid propylene oxide/air mixture under high-temperature source ignition [J]. Fuel, 2023, 331: 125815. DOI: 10.1016/j.fuel.2022.125815.
|
[7] |
BAI C H, LIU W J, YAO J, et al. Explosion characteristics of liquid fuels at low initial ambient pressures and temperatures [J]. Fuel, 2020, 265: 116951. DOI: 10.1016/j.fuel.2019.116951.
|
[8] |
ZHANG Q, LI W, TAN R M, et al. Combustion parameters of gaseous epoxypropane/air in a confined vessel [J]. Fuel, 2013, 105: 512–517. DOI: 10.1016/j.fuel.2012.10.017.
|
[9] |
谭汝媚, 张奇. 环氧丙烷蒸气-铝粉-空气杂混合物的爆炸特性研究 [J]. 高压物理学报, 2014, 28(1): 48–54. DOI: 10.11858/gywlxb.2014.01.008.
TAN R M, ZHANG Q. Research on the explosibility of gaseous epoxypropane-aluminum dust-air hybrid mixtures [J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 48–54. DOI: 10.11858/gywlxb.2014.01.008.
|
[10] |
徐敏潇, 刘大斌, 徐森. 硼含量对燃料空气炸药爆炸性能影响的试验研究 [J]. 兵工学报, 2017, 38(5): 886–891. DOI: 10.3969/j.issn.1000-1093.2017.05.007.
XU M X, LIU D B, XU S. Experimental study of influence of boron content on explosion performance of fuel-air explosive [J]. Acta Armamentarii, 2017, 38(5): 886–891. DOI: 10.3969/j.issn.1000-1093.2017.05.007.
|
[11] |
WANG Y X, LIU Y, XU Q M, et al. Effect of metal powders on explosion of fuel-air explosives with delayed secondary igniters [J]. Defence Technology, 2021, 17(3): 785–791. DOI: 10.1016/j.dt.2020.05.010.
|
[12] |
CHENG Y F, YAO Y L, WANG Z H, et al. An improved two-colour pyrometer based method for measuring dynamic temperature mapping of hydrogen-air combustion [J]. International Journal of Hydrogen Energy, 2021, 46(69): 34463–34468. DOI: 10.1016/j.ijhydene.2021.07.224.
|
[13] |
范彩玲. 温压弹爆炸热毁伤效应研究 [D]. 太原: 中北大学, 2022. DOI: 10.27470/d.cnki.ghbgc.2022.000903.
FAN C L. Research on thermal damage effect of thermobaric bomb explosive [D]. Taiyuan: North University of China, 2022. DOI: 10.27470/d.cnki.ghbgc.2022.000903.
|
[14] |
LIU X L, WANG Y, ZHANG Q. A study of the explosion parameters of vapor-liquid two-phase JP-10/air mixtures [J]. Fuel, 2016, 165: 279–288. DOI: 10.1016/j.fuel.2015.10.081.
|
[15] |
张启威, 程扬帆, 夏煜, 等. 比色测温技术在瞬态爆炸温度场测量中的应用研究 [J]. 爆炸与冲击, 2022, 42(11): 114101. DOI: 10.11883/bzycj-2021-0477.
ZHANG Q W, CHENG Y F, XIA Y, et al. Application of colorimetric pyrometer in the measurement of transient explosion temperature [J]. Explosion and Shock Waves, 2022, 42(11): 114101. DOI: 10.11883/bzycj-2021-0477.
|
[16] |
戴景民. 辐射测温的发展现状与展望 [J]. 自动化技术与应用, 2004, 23(3): 1–7. DOI: 10.3969/j.issn.1003-7241.2004.03.001.
DAI J M. Survey of radiation thermometry [J]. Techniques of Automations & Applications, 2004, 23(3): 1–7. DOI: 10.3969/j.issn.1003-7241.2004.03.001.
|
[17] |
WANG H, CHENG Y F, ZHU S J, et al. Effects of content and particle size of TiH2 powders on the energy output rules of RDX composite explosives [J]. Defence Technology, 2023. DOI: 10.1016/j.dt.2023.05.002.
|
[18] |
夏煜, 程扬帆, 李世周, 等. 无约束条件下甲烷/空气预混气体燃爆特性研究 [J]. 实验力学, 2023, 38(2): 243–253. DOI: 10.7520/1001-4888-22-119.
XIA Y, CHENG Y F, LI S Z, et al. Combustion and explosion characteristics of methane/air premixed gas under unconstrained condition [J]. Journal of Experimental Mechanics, 2023, 38(2): 243–253. DOI: 10.7520/1001-4888-22-119.
|
[19] |
LI S Z, CHENG Y F, WANG R, et al. Suppression effects and mechanisms of three typical solid suppressants on titanium hydride dust explosions [J]. Process Safety and Environmental Protection, 2023, 177: 688–698. DOI: 10.1016/j.psep.2023.07.039.
|
[20] |
蒋八运, 程扬帆, 李世周, 等. 环氧丙烷/空气混合物气-液两相燃爆特性 [J]. 含能材料, 2023, 31(7): 699–706. DOI: 10.11943/CJEM2023077.
JIANG B Y, CHENG Y F, LI S Z, et al. Vapor-liquid two-phase combustion and explosion characteristics of propylene oxide/air mixtures [J]. Chinese Journal of Energetic Materials, 2023, 31(7): 699–706. DOI: 10.11943/CJEM2023077.
|
[21] |
WANG Z H, CHENG Y F, MOGI T, et al. Flame structures and particle-combustion mechanisms in nano and micron titanium dust explosions [J]. Journal of Loss Prevention in the Process Industries, 2022, 80: 104876. DOI: 10.1016/j.jlp.2022.104876.
|
[22] |
ZHANG C, BAI C H, YAO J. Liquid component effect on the dispersion and explosion characteristics of solid-liquid mixed fuel [J]. Fuel, 2022, 319: 123806. DOI: 10.1016/j.fuel.2022.123806.
|
[23] |
DE IZARRA C, GITTON J M. Calibration and temperature profile of a tungsten filament lamp [J]. European Journal of Physics, 2010, 31(4): 933–942. DOI: 10.1088/0143-0807/31/4/022.
|
[24] |
李文霞, 林柏泉, 魏吴晋, 等. 纳米级别铝粉粉尘爆炸的实验研究 [J]. 中国矿业大学学报, 2010, 39(4): 475–479.
LI W X, LIN B Q, WEI W J, et al. Experimental study on the explosive characteristics of nano-aluminum powder [J]. Journal of China University of Mining & Technology, 2010, 39(4): 475–479.
|
[25] |
LIU W J, BAI C H, LIU Q M, et al. Effect of metal dust fuel at a low concentration on explosive/air explosion characteristics [J]. Combustion and Flame, 2020, 221: 41–49. DOI: 10.1016/j.combustflame.2020.07.025.
|
[26] |
林柏泉, 梅晓凝, 王可, 等. 基于20 L球形爆炸装置的微米级铝粉爆炸特性实验 [J]. 北京理工大学学报, 2016, 36(7): 661–667. DOI: 10.15918/j.tbit1001-0645.2016.07.001.
LIN B Q, MEI X N, WANG K, et al. Explosion characteristics of micro-aluminum powders in 20 L spherical vessels [J]. Transactions of Beijing Institute of Technology, 2016, 36(7): 661–667. DOI: 10.15918/j.tbit1001-0645.2016.07.001.
|
[27] |
王学锐. 铝热反应热效应机制与工程应用 [D]. 淮南: 安徽理工大学, 2022. DOI: 10.26918/d.cnki.ghngc.2022.000740.
WANG X R. Thermal effect mechanism and engineering application of aluminum thermal reaction [D]. Huainan: Anhui University of Science and Technology, 2022. DOI: 10.26918/d.cnki.ghngc.2022.000740.
|
[28] |
郝海霞, 姚二岗, 王宝兴, 等. 含纳米金属粉AP/HTPB复合固体推进剂的激光点火特性 [J]. 含能材料, 2015, 23(9): 908–914. DOI: 10.11943/j.issn.1006-9941.2015.09.014.
HAO H X, YAO E G, WANG B X, et al. Laser ignition characteristics of AP /HTPB composite solid propellants containing metal nanopowders [J]. Chinese Journal of Energetic Materials, 2015, 23(9): 908–914. DOI: 10.11943/j.issn.1006-9941.2015.09.014.
|
[29] |
方伟, 赵省向, 张奇, 等. 含微/纳米铝粉燃料空气炸药爆炸特性 [J]. 含能材料, 2021, 29(10): 971–976. DOI: 10.11943/CJEM2021080.
FANG W, ZHAO S X, ZHANG Q, et al. Explosion characteristic of fuel-air explosion containing micro/nano-aluminum powder [J]. Chinese Journal of Energetic Materials, 2021, 29(10): 971–976. DOI: 10.11943/CJEM2021080.
|