Turn off MathJax
Article Contents
FEI Honglu, WANG Tianheng, JING Guangjie. On mechanism and prevention of sympathetic detonation of bench blasting in water-rich fissure open-pit mine[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0064
Citation: FEI Honglu, WANG Tianheng, JING Guangjie. On mechanism and prevention of sympathetic detonation of bench blasting in water-rich fissure open-pit mine[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0064

On mechanism and prevention of sympathetic detonation of bench blasting in water-rich fissure open-pit mine

doi: 10.11883/bzycj-2024-0064
  • Received Date: 2024-03-11
  • Rev Recd Date: 2024-07-09
  • Available Online: 2024-07-10
  • Sympathetic detonation is defined as the phenomenon where the detonation pressure in one borehole causes explosives in another adjacent borehole to be detonated through an inert medium. It can increase the stress wave and the value of peak particle velocity, even causing fly rock to be thrown far away. These effects can impact the safety of blasting operation, slope stability, and blasting effects. Sympathetic detonation was identified by comparing the fluctuation difference of recorded blast-induced vibration signals. To investigate the mechanism of sympathetic detonation and methods of preventing sympathetic detonation in water-rich fissure open-pit mines, numerical simulation and field tests were adopted to analyze the effects of parameters on the occurrence of sympathetic detonation, such as the quantity of donor charge, crack width, and distance between charges. These results indicated that the borehole pressure increased with the decrease in decoupled charge coefficient, the increase of the crack width between boreholes (0.25-1.00 cm), and the decrease in the distance between boreholes. By using a wave-blocking tube, filling rock power, or setting up an air gap, the impact pressure produced by the donor charge was transmitted to the acceptor charge through the water-rich cracks. These methods made impact pressure lower than the critical detonation pressure of the emulsion explosive, which could prevent the sympathetic detonation of the accepted charge. Based on the field tests and simulated results, rock power filling was the best method of preventing sympathetic detonation when there was a single crack between the boreholes. Meanwhile, using a wave-blocking tube with a thickness of 2.6 mm was the best method of preventing sympathetic detonation when there were multiple cracks between the boreholes. Above all, the proposed detection method and obtained technologies provide the theory and guidance for preventing sympathetic detonation, which leads to improved blasting effects and the safety of blasting operations.
  • loading
  • [1]
    王玉杰. 爆破工程 [M]. 武汉: 武汉理工大学出版社, 2007: 20–22.
    [2]
    DERIBAS A A, MEDVEDEV E A, RESHETNYAK Y A, et al. Detonation of emulsion explosives containing hollow microspheres [J]. Doklady Physics, 2003, 48(4): 163–165. DOI: 10.1134/1.1574370.
    [3]
    李铮, 项续章, 郭梓熙. 各种炸药的殉爆安全距离 [J]. 爆炸与冲击, 1994, 14(3): 231–241. DOI: 10.11883/1001-1455(1994)03-0231-11.

    LI Z, XIANG X Z, GUO Z X. Various explosives of safety distance of unsympathetic detonation [J]. Explosion and Shock Waves, 1994, 14(3): 231–241. DOI: 10.11883/1001-1455(1994)03-0231-11.
    [4]
    费鸿禄. 爆破理论及其应用 [M]. 2版. 北京: 煤炭工业出版社, 2018: 89–92.
    [5]
    汪成运, 魏志丰, 何鹏鹏. 炸药殉爆的研究进展与展望 [J]. 爆破器材, 2022, 51(6): 1–8. DOI: 10.3969/j.issn.1001-8352.2022.06.001.

    WANG C Y, WEI Z F, HE P P. Research progress of sympathetic detonation of explosives [J]. Explosive Materials, 2022, 51(6): 1–8. DOI: 10.3969/j.issn.1001-8352.2022.06.001.
    [6]
    余德运, 谢烽, 王旭耀. ANFO在炮孔中的殉爆起爆试验研究 [J]. 爆破器材, 2020, 49(5): 59–64. DOI: 10.3969/j.issn.1001-8352.2020.05.011.

    YU D Y, XIE F, WANG X Y. Experimental study on sympathetic detonation of ANFO in hole [J]. Explosive Materials, 2020, 49(5): 59–64. DOI: 10.3969/j.issn.1001-8352.2020.05.011.
    [7]
    ZHANG Z F, WANG C, HU H L, et al. Investigation of underwater sympathetic detonation [J]. Propellants, Explosives, Pyrotechnics, 2020, 45(11): 1736–1744. DOI: 10.1002/prep.202000099.
    [8]
    YANG J X, SHI C, YANG W K, et al. Numerical simulation of column charge explosive in rock masses with particle flow code [J]. Granular Matter, 2019, 21(4): 96. DOI: 10.1007/s10035-019-0950-2.
    [9]
    姜颖资, 王伟力, 黄雪峰, 等. 带壳炸药在高速运动炸药作用下殉爆效应研究 [J]. 工程爆破, 2014, 20(3): 1–4. DOI: 10.3969/j.issn.1006-7051.2014.03.001.

    JIANG Y Z, WANG W L, HUANG X F, et al. Research on the sympathetic detonation effect of shelled explosive by highspeed movement explosive [J]. Engineering Blasting, 2014, 20(3): 1–4. DOI: 10.3969/j.issn.1006-7051.2014.03.001.
    [10]
    SHIN H, LEE W. Material design guidelines for explosive confinements to control impact shock-induced detonations based on shock transmission/reflection analysis [J]. International Journal of Impact Engineering, 2003, 28(5): 465–478. DOI: 10.1016/S0734-743X(2)00075-1.
    [11]
    STARKENBERG J, HUANG Y, ARBUCKLE A. Numerical modeling of projectile impact shock initiation of bare and covered composition-B [J]. Journal of Energetic Materials, 1984, 2(1/2): 1–41. DOI: 10.1080/07370658408012327.
    [12]
    李凯, 詹勇, 程波, 等. 爆炸冲击波经隔板衰减后的起爆能力数值研究 [C]//2014’(第六届)含能材料与钝感弹药技术学术研讨会论文集. 北京: 中国兵工学会爆炸与安全技术专业委员会, 2014: 474–478.
    [13]
    李顺波, 东兆星, 齐燕军, 等. 爆炸冲击波在不同介质中传播衰减规律的数值模拟 [J]. 振动与冲击, 2009, 28(7): 115–117. DOI: 10.13465/j.cnki.jvs.2009.07.001.

    LI S B, DONG Z X, QI Y J, et al. Numerical simulation for spread decay of blasting shock wave in different media [J]. Journal of Vibration and Shock, 2009, 28(7): 115–117. DOI: 10.13465/j.cnki.jvs.2009.07.001.
    [14]
    赵根, 季荣, 郑晓宁, 等. 乳化炸药水中爆炸冲击波传播规律试验研究 [J]. 爆破, 2011, 28(2): 1–4. DOI: 10.3963/j.issn.1001-487X.2011.02.001.

    ZHAO G, JI R, ZHENG X N, et al. Experimental investigation on propagation rule of shock wave by emulsion explosives underwater blasting [J]. Blasting, 2011, 28(2): 1–4. DOI: 10.3963/j.issn.1001-487X.2011.02.001.
    [15]
    花宝玲, 李建军, 丁淳彤. 乳化炸药冲击起爆过程的研究 [J]. 工程爆破, 1998, 4(1): 30–33.

    HUA B L, LI J J, DING C T. Study on shock initiation process for emulsion explosives [J]. Engineering Blasting, 1998, 4(1): 30–33.
    [16]
    李建军, 汪旭光, 欧育湘, 等. 乳化炸药冲击起爆的实验研究 [J]. 工程爆破, 1995, 1(1): 14–19.

    LI J J, WANG X G, OU Y X, et al. Experimental study on shock initiations of emulsion explosives [J]. Engineering Blasting, 1995, 1(1): 14–19.
    [17]
    马晶晶, 龙运杰, 唐虹靖, 等. 炮孔约束下炸药殉爆距离试验研究 [J]. 采矿技术, 2023, 23(6): 165–169. DOI: 10.13828/j.cnki.ckjs.2023.06.037.

    MA J J, LONG Y J, TANG H J, et al. Experimental study on explosive detonation distance under blast hole constraints [J]. Mining Technology, 2023, 23(6): 165–169. DOI: 10.13828/j.cnki.ckjs.2023.06.037.
    [18]
    陈庆凯, 夏亚伟, 刘占富, 等. 约束条件对乳化炸药殉爆距离影响的研究 [J]. 矿业研究与开发, 2017, 37(1): 45–49. DOI: 10.13827/j.cnki.kyyk.2017.01.011.

    CHEN Q K, XIA Y W, LIU Z F, et al. The effect of constraint conditions on the gap distance of emulsion explosive [J]. Mining Research and Development, 2017, 37(1): 45–49. DOI: 10.13827/j.cnki.kyyk.2017.01.011.
    [19]
    陈朗, 王晨, 鲁建英, 等. 炸药殉爆实验和数值模拟 [J]. 北京理工大学学报, 2009, 29(6): 497–500,524. DOI: 10.15918/j.tbit1001-0645.2009.06.004.

    CHEN L, WANG C, LU J Y, et al. Experiment simulation of sympathetic detonation tests [J]. Transactions of Beijing Institute of Technology, 2009, 29(6): 497–500,524. DOI: 10.15918/j.tbit1001-0645.2009.06.004.
    [20]
    张所硕, 聂建新, 张剑, 等. 约束空间内壳装炸药殉爆及防护 [J]. 爆炸与冲击, 2023, 43(8): 085101. DOI: 10.11883/bzycj-2022-0456.

    ZHANG S S, NIE J X, ZHANG J, et al. Sympathetic detonation of explosive charge in confined space and its protection [J]. Explosion and Shock Waves, 2023, 43(8): 106–119. DOI: 10.11883/bzycj-2022-0456.
    [21]
    胡宏伟, 王健, 卞云龙, 等. 带壳装药水中殉爆特性分析 [J]. 水下无人系统学报, 2022, 30(3): 308–313. DOI: 10.11993/j.issn.2096-3920.2022.03.005.

    HU H W, WANG J, BIAN Y L, et al. Experiments of sympathetic detonation performance of explosives with shell in water [J]. Journal of Unmanned Undersea Systems, 2022, 30(3): 308–313. DOI: 10.11993/j.issn.2096-3920.2022.03.005.
    [22]
    刘晓文, 高玉刚. 炸药在水介质中殉爆特性分析 [J]. 工程爆破, 2022, 28(4): 102–107. DOI: 10.19931/j.EB.20210241.

    LIU X W, GAO Y G. Analysis of explosive martyrdom in water medium [J]. Engineering Blasting, 2022, 28(4): 102–107. DOI: 10.19931/j.EB.20210241.
    [23]
    KO Y H, KIM S J, YANG H S. Assessment for the sympathetic detonation characteristics of underwater shaped charge [J]. Geosystem Engineering, 2017, 20(5): 286–293. DOI: 10.1080/12269328.2017.1323679.
    [24]
    张忠伟, 任舸, 李洪涛. 锦屏二级水电站导流隧洞进口围堰拆除爆破 [J]. 爆破, 2011, 28(4): 77–80. DOI: 10.3963/j.issn.1001-487X.2011.04.021.

    ZHANG Z W, REN G, LI H T. Explosive demolition of intake cofferdam of diversion tunnel on Jingping Ⅱ Hydropower Station [J]. Blasting, 2011, 28(4): 77–80. DOI: 10.3963/j.issn.1001-487X.2011.04.021.
    [25]
    中华人民共和国国家质量监督检验检疫总局. 爆破安全规程: GB 6722–2014 [S]. 北京: 冶金工业出版社, 2014.
    [26]
    李文焱. 元宝山露天矿富水裂隙台阶爆破的殉爆机理及防止殉爆技术研究 [D]. 辽宁工程技术大学, 2023. DOI: 10.27210/d.cnki.glnju.2023.000910.
    [27]
    凌天龙, 王宇涛, 刘殿书 等. 修正RHT模型在岩体爆破响应数值模拟中的应用 [J]. 煤炭学报, 2018, 43(S2): 434–442. DOI: 10.13225/j.cnki.jccs.2017.1698.

    LING T L, WANG Y T, LIU D S, et al. Modified RHT model for numerical simulation of dynamic response of rock mass under blasting load [J]. Journal of China Coal Society, 2018, 43(S2): 434–442. DOI: 10.13225/j.cnki.jccs.2017.1698.
    [28]
    SHINY S, LEE M, LAM K Y, et al. Modeling mitigation effects of watershield on shock waves [J]. Shock and Vibration, 1998, 5(4): 225–234. DOI: 10.1155/1998/782032.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(27)  / Tables(5)

    Article Metrics

    Article views (50) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return