M1近似应用于强爆炸火球辐射输运数值模拟

闫凯 田宙 郭永辉 董楠

闫凯, 田宙, 郭永辉, 董楠. M1近似应用于强爆炸火球辐射输运数值模拟[J]. 爆炸与冲击, 2014, 34(2): 241-246. doi: 10.11883/1001-1455(2014)02-0241-06
引用本文: 闫凯, 田宙, 郭永辉, 董楠. M1近似应用于强爆炸火球辐射输运数值模拟[J]. 爆炸与冲击, 2014, 34(2): 241-246. doi: 10.11883/1001-1455(2014)02-0241-06
Yan Kai, Tian Zhou, Guo Yong -hui, Dong Nan. Application of M1approach to numerical simulation of radiative transfer in strong explosion fireball[J]. Explosion And Shock Waves, 2014, 34(2): 241-246. doi: 10.11883/1001-1455(2014)02-0241-06
Citation: Yan Kai, Tian Zhou, Guo Yong -hui, Dong Nan. Application of M1approach to numerical simulation of radiative transfer in strong explosion fireball[J]. Explosion And Shock Waves, 2014, 34(2): 241-246. doi: 10.11883/1001-1455(2014)02-0241-06

M1近似应用于强爆炸火球辐射输运数值模拟

doi: 10.11883/1001-1455(2014)02-0241-06
基金项目: 国家自然科学基金项目(91330205)
详细信息
    作者简介:

    闫凯(1984—), 男, 硕士, 助理研究员

  • 中图分类号: O389; O242

Application of M1approach to numerical simulation of radiative transfer in strong explosion fireball

Funds: Supported by the National Natural Science Foundation of China (91330205)
More Information
  • 摘要: 推导了P1近似、Minerbo近似和M1近似模型中Eddington因子和辐射输运方程的最大特征值随各向异性因子的变化关系。采用M1近似模型对1kt TNT当量的强爆炸火球的辐射输运过程进行了数值模拟,给出了火球阵面和冲击波阵面走时,并与已有计算结果进行了比较。结果表明:辐射扩张阶段M1近似下得到的辐射波波速快于P1近似下的计算结果,落后于Minerbo近似下的计算结果,而在冲击波扩张阶段三者计算结果又趋于一致。
  • 图  1  不同近似下Eddington因子随各向异性因子的变化

    Figure  1.  Eddington factor varied with anisotropy factor for different approach models

    图  2  不同近似下辐射输运矩方程的最大特征值随各向异性因子变化

    Figure  2.  The largest eigenvalues of moment equations of radiative transfer varied with anisotropy factor for different approach models

    图  3  采用M1近似计算得到的强爆炸的火球阵面和冲击波走时与已有结果[2, 6]的比较

    Figure  3.  Fireball and shock wave fronts calculated by MI approach compared with existent results[2, 6]

  • [1] 乔登江.核爆炸物理概论[M].北京: 国防工业出版社, 2003: 169-262.
    [2] Brode H L. Fireball phenomenology[R]. The RAND Corporation. AD0612197, 1965.
    [3] Brode H L, Hillendahl R W, Landshoff R K. Thermal radiation phenomena. Volume V: Radiation hydrodynamics of high temperature air[R]. AD0672837, 1967.
    [4] 陈健华, 王心正, 谢龙生, 等.均匀空气中的强爆炸一维辐射流体力学数值解[J].爆炸与冲击, 1981(2): 37-49. http://www.bzycj.cn/article/id/11382

    Chen Jian-hua, Wang Xin-zheng, Xie Long-sheng, et al. A one-dimensional radiation hydrodynamic numerical solution for a strong explosion in uniform atmosphere[J]. Explosion and Shock Waves, 1981(2): 37-49. http://www.bzycj.cn/article/id/11382
    [5] 王心正, 隋卫星.高空核爆炸火球的二维辐射流体力学计算[J].计算物理, 1987, 4(2): 159-168.

    Wang Xin-zheng, Sui Wei-xing. Two-dimension radiation hydrodynamics calculation of the high-altitude fireball[J]. Chinese Journal of Computational Physics, 1987, 4(2): 159-168.
    [6] 田宙, 乔登江, 郭永辉.强爆炸早期火球现象的一维数值研究[J].计算物理, 2010, 27(1): 8-14. doi: 10.3969/j.issn.1001-246X.2010.01.002

    Tian Zhou, Qiao Deng-jiang, Guo Yong-hui. A one-dimensional numerical study on early fireball in strong explosion[J]. Chinese Journal of Computational Physics, 2010, 27(1): 8-14. doi: 10.3969/j.issn.1001-246X.2010.01.002
    [7] Minerbo G N. Maximum entropy Eddington factors[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1978, 20(6): 541-545. doi: 10.1016/0022-4073(78)90024-9
    [8] Kumholz M R, Klein R I, Mckee C F, et al. Equations and algorithms for mixed-frame flux-limited diffusion radiation hydrodymics[J]. The Astrophysical Journal, 2007, 667(1): 626-643. doi: 10.1086/520791
    [9] Seaid M, Klar A, Dubroca B. Flux limiters in the coupling of radiation and hydrodynamic models[J]. Journal of Computational and Applied Mathematics, 2004, 168(1/2): 425-435. https://www.sciencedirect.com/science/article/pii/S0377042703009737
    [10] Buer C, Despres B. Asymptotic preserving and positive schemes for radiation hydrodynamics[J]. Journal of Computational Physics, 2006, 215(2): 717-740. doi: 10.1016/j.jcp.2005.11.011
    [11] Swesty F D, Myra E S. A numerical algorithm for modeling multigroup neutrino-radiation hydrodynamics in two spatial dimensions[J]. The Astrophysical Journal Supplement Series, 2009, 181(1): 1-52. doi: 10.1088/0067-0049/181/1/1
    [12] Levermore C D. Relating Eddington factors to flux limiters[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1984, 31(2): 149-160. doi: 10.1016/0022-4073(84)90112-2
    [13] Anile A M, Pennisi S, Sammartino M. A thermodynamical approach to Eddington factors[J]. Journal of Mathematical Physics, 1991, 32(2): 544-555. doi: 10.1063/1.529391
    [14] Brunner T A, Holloway J P. One-dimensional Riemann solvers and the maximum entropy closure[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2001, 69(5): 543-566. doi: 10.1016/S0022-4073(00)00099-6
    [15] Buet C, Despres B. Asymptotic analysis of fluid models for the coupling of radiation and hydrodynamics[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 85(3/4): 385-418. https://www.sciencedirect.com/science/article/pii/S0022407303002334
    [16] Castor J I. Radiation hydrodynamics[M]. Cambridge, UK: Cambridge University Press, 2004: 213-245.
    [17] Pomraning G C. The equations of radiation hydrodynamics[M]. Dover: Dover Publications Inc, 2005: 427-505.
  • 加载中
图(3)
计量
  • 文章访问数:  3400
  • HTML全文浏览量:  362
  • PDF下载量:  607
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-28
  • 修回日期:  2013-03-18
  • 刊出日期:  2014-03-25

目录

    /

    返回文章
    返回