用CSTBD试样确定砂岩的动态起裂和扩展韧度

杨井瑞 张财贵 周妍 王启智

杨井瑞, 张财贵, 周妍, 王启智. 用CSTBD试样确定砂岩的动态起裂和扩展韧度[J]. 爆炸与冲击, 2014, 34(3): 264-271. doi: 10.11883/1001-1455(2014)03-0264-08
引用本文: 杨井瑞, 张财贵, 周妍, 王启智. 用CSTBD试样确定砂岩的动态起裂和扩展韧度[J]. 爆炸与冲击, 2014, 34(3): 264-271. doi: 10.11883/1001-1455(2014)03-0264-08
Yang Jing-rui, Zhang Cai-gui, Zhou Yan, Wang Qi-zhi. Determination of dynamic initiation toughness and propagation toughness of sandstone using CSTBD specimens[J]. Explosion And Shock Waves, 2014, 34(3): 264-271. doi: 10.11883/1001-1455(2014)03-0264-08
Citation: Yang Jing-rui, Zhang Cai-gui, Zhou Yan, Wang Qi-zhi. Determination of dynamic initiation toughness and propagation toughness of sandstone using CSTBD specimens[J]. Explosion And Shock Waves, 2014, 34(3): 264-271. doi: 10.11883/1001-1455(2014)03-0264-08

用CSTBD试样确定砂岩的动态起裂和扩展韧度

doi: 10.11883/1001-1455(2014)03-0264-08
基金项目: 国家自然科学基金项目(51179115)
详细信息
    作者简介:

    杨井瑞(1989—), 男, 硕士研究生

  • 中图分类号: O348.3;TU435

Determination of dynamic initiation toughness and propagation toughness of sandstone using CSTBD specimens

Funds: Supported by the National Natural Science Foundation of China (51179115)
More Information
  • 摘要: 利用大直径霍普金森压杆径向冲击中心直裂纹巴西圆盘(CSTBD)砂岩试样,完成Ⅰ型动态断裂实验。利用实验-数值方法确定了不同动态加载率下砂岩的动态起裂韧度;结合实验-数值法以及普适函数确定了不同裂纹扩展速度下砂岩的动态扩展韧度。为验证普适函数法和实验-数值法的有效性,将实验所得结果与其他学者的研究成果进行了对比分析,得到了相同的规律。所确定的岩石动态起裂韧度和动态扩展韧度分别随动态加载率的提高和裂纹扩展速度的提高而增加。
  • 图  1  CSTBD试样

    Figure  1.  CSTBD specimen

    图  2  SHPB加载装置示意图

    Figure  2.  Schematic diagram of SHPB loading device

    图  3  CSTBD-1-3试样叠加后的加载波形

    Figure  3.  Superposed loading wave of CSTBD-1-3

    图  4  CSTBD-1-3试样tftptf-p的确定

    Figure  4.  Determination for tf, tp and tf-p of CSTBD-1-3

    图  5  CSTBD的有限元1/2模型

    Figure  5.  Half finite element models of CSTBD

    图  6  裂尖坐标和1/4节点奇异单元

    Figure  6.  Crack tip coordinate system and singular element with quarter points

    图  7  实验-数值法所得CSTBD-1-3的计算结果

    Figure  7.  Results of CSTBD-1-3 by experimental-numerical method

    图  8  实验-数值法所得动态起裂韧度与动态加载率

    Figure  8.  Dynamic initiation toughness and dynamic loading rate obtained by experimental-numerical method

    图  9  实验-数值法所得扩展断裂韧度和扩展速度

    Figure  9.  Crack growth toughness and crack speed obtained by experimental-numerical method

    表  1  CSTBD试样的实验数据

    Table  1.   Experimental data of the CSTBD specimens

    试样 tf/μs tp/μs tf/μs tf-p/μs va/(m·s-1) k(va)
    CSTBD-1-3 143.7 170.9 171.5 27.2 367.6 0.799
    CSTBD-1-4 134.0 158.5 168.2 24.5 408.1 0.775
    CSTBD-2-1 129.4 154.1 149.1 24.7 404.9 0.777
    CSTBD-2-2 127.6 152.1 153.4 24.5 408.1 0.775
    CSTBD-2-3 132.2 160.8 162.4 28.6 349.7 0.810
    CSTBD-3-1 131.3 160.6 169.1 29.3 341.3 0.815
    CSTBD-3-2 125.1 150.0 164.5 24.9 401.6 0.779
    CSTBD-3-3 122.7 148.8 166.1 26.1 383.1 0.790
    下载: 导出CSV

    表  2  CSTBD试样的计算结果

    Table  2.   Results of the CSTBD specimens

    试样 K0/
    (MPa·m1/2)
    KⅠCd/
    (MPa·m1/2)
    KⅠCD/
    (MPa·m1/2)
    KⅠCD[9]/
    (MPa·m1/2)
    e/
    %
    $\dot{K}_{\mathrm{I}} / $
    (GPa·m1/2·s-1)
    CSTBD-1-3 17.192 13.736 12.766 12.763 0.02 88.84
    CSTBD-1-4 16.094 12.473 10.318 10.117 1.99 77.00
    CSTBD-2-1 21.619 16.798 16.301 16.745 -2.65 125.97
    CSTBD-2-2 23.250 18.019 17.812 17.326 2.81 139.59
    CSTBD-2-3 17.926 14.520 14.244 14.391 -1.02 107.75
    CSTBD-3-1 19.005 15.489 17.060 17.098 -0.22 129.93
    CSTBD-3-2 19.175 14.937 14.372 14.345 0.19 114.88
    CSTBD-3-3 18.553 14.657 13.151 12.958 1.49 107.18
    e=(KⅠCDKⅠCD[9])/KⅠCD[9]
    下载: 导出CSV
  • [1] 范天佑.应用断裂动力学基础[M].北京: 北京理工大学出版社, 2006: 38-43, 108-130.
    [2] 王自强, 陈少华.高等断裂力学[M].北京: 科学出版社, 2009: 271-324.
    [3] Jiang F C, Vecchio K S. Hopkinson bar loaded fracture experimental technique: A critical review of dynamic fracture toughness tests[J]. Applied Mechanics Reviews, 2009, 62(6): 060802-1-060802-39. doi: 10.1115/1.3124647
    [4] 陈德兴, 胡时胜, 张守保, 等.大尺寸Hopkinson压杆及其应用[J].实验力学, 2005, 20(3): 398-402.

    Chen De-xing, Hu Shi-sheng, Zhang Shou-bao, et al. Large dimension Hopkinson pressure bar and its application[J]. Journal of Experimental Mechanics, 2005, 20(3): 398-402.
    [5] 李世愚, 和泰名, 尹祥础, 等.岩石断裂力学导论[M].合肥: 中国科学技术大学出版社, 2010: 187-194.
    [6] Zhou J, Wang Y, Xia Y M. Mode-Ⅰ fracture toughness of PMMA at high loading rates[J]. Journal of Materials Science, 2006, 41: 8363-8366. doi: 10.1007/s10853-006-0980-0
    [7] 张盛, 王启智, 谢和平.岩石动态断裂韧度的尺寸效应[J].爆炸与冲击, 2008, 28(6): 544-551. doi: 10.3321/j.issn:1001-1455.2008.06.011

    Zhang Sheng, Wang Qi-zhi, Xie He-ping. Size effect of rock dynamic fracture toughness[J]. Explosion and Shock Waves, 2008, 28(6): 544-551. doi: 10.3321/j.issn:1001-1455.2008.06.011
    [8] Wang Q Z, Feng F, Ni M, et al. Measurement of mode Ⅰ and mode Ⅱ rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar[J]. Engineering Fracture Mechanics, 2011, 78: 2455-2469. doi: 10.1016/j.engfracmech.2011.06.004
    [9] 苟小平, 杨井瑞, 王启智.基于P-CCNBD试样的岩石动态断裂韧度测试方法[J].岩土力学, 2013, 34(9): 2449-2459.

    Gou Xiao-ping, Yang Jing-rui, Wang Qi-zhi. Test method for determining rock dynamic fracture toughness using P-CCNBD specimens[J]. Rock and Soil Mechanics, 2013, 34(9): 2449-2459.
    [10] Owen D M, Zhuang S, Rosakis A J, et al. Experimental determination of dynamic crack initiation and propagation fracture toughness in thin aluminum sheets[J]. International Journal of Fracture, 1998, 90: 153-174. doi: 10.1023/A:1007439301360
    [11] Bertram A, Kalthoff J F. Crack propagation toughness of rock for the range from low to very high crack speeds[J]. Key Engineering Materials, 2003, 251/252: 423-430. doi: 10.4028/www.scientific.net/KEM.251-252.423
    [12] Freund L B. Crack propagation in an elastic solid subjected to general loading-Ⅰ. Constant rate of extension[J]. Journal of the Mechanics and Physics of Solids, 1972, 20(3): 129-140. doi: 10.1016/0022-5096(72)90006-3
    [13] Freund L B. Crack propagation in an elastic solid subjected to general loading-Ⅱ. Non-uniform rate of extension[J]. Journal of the Mechanics and Physics of Solids, 1972, 20(3): 141-152. doi: 10.1016/0022-5096(72)90007-5
    [14] Freund L B. Crack propagation in an elastic solid subjected to general loading-Ⅲ. Stress wave loading[J]. Journal of the Mechanics and Physics of Solids, 1973, 21(2): 47-61. doi: 10.1016/0022-5096(73)90029-X
    [15] Freund L B. Crack propagation in an elastic solid subjected to general loading-Ⅳ. Obliquely incident stress wave pulse[J]. Journal of the Mechanics and Physics of Solids, 1974, 22(3): 137-146. doi: 10.1016/0022-5096(74)90021-0
    [16] Kostrov B V. On the crack propagation with variable velocity[J]. International Journal of Fracture, 1975, 11(1): 47-56. doi: 10.1007/BF00034712
    [17] Burridge R. An influence function for the intensity factor in tensile fracture[J]. International Journal of Engineering Science, 1976, 14: 725-734. doi: 10.1016/0020-7225(76)90028-8
    [18] Freund L B. Dynamic fracture mechanics[M]. Cambridge: Cambridge University Press, 1990: 296-432.
    [19] Bhat H S, Rosakis A, Sammis C G. A micromechanics based constitutive model for brittle failure at high strain rate[J]. Journal of Applied Mechanics, 2012, 79: 031016-1-12. doi: 10.1115/1.4005897
    [20] Ren X D, Li J. Dynamic fracture in irregularly structured systems[J]. Physical Review E, 2012, 85: 055102-1-4. doi: 10.1103/PhysRevE.85.055102
    [21] 谢和平, 高峰, 周宏伟, 等.岩石断裂和破碎的分形研究[J].防灾减灾工程学报, 2003, 23(4): 1-9.

    Xie He-ping, Gao Feng, Zhou Hong-wei, et al. Fractal fracture and fragmentation in rocks[J]. Journal of Disaster Prevention and Mitigation Engineering, 2003, 23(4): 1-9.
    [22] Zhou Z L, Li X B, Liu A H, et al. Stress uniformity of split Hopkinson pressure bar under half-sine wave loads[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48: 697-701. doi: 10.1016/j.ijrmms.2010.09.006
    [23] 李为民, 许金余.大直径分离式霍普金森压杆试验中的波形整形技术研究[J].兵工学报, 2009, 30(3): 350-355. doi: 10.3321/j.issn:1000-1093.2009.03.019

    Li Wei-min, Xu Jin-yu. Pulse shaping techniques for large-diameter split Hopkinson pressure bar test[J]. Acta Armamentarii, 2009, 30(3): 350-355. doi: 10.3321/j.issn:1000-1093.2009.03.019
    [24] Gomez J T, Shukla A, Sharma A. Static and dynamic behavior of concrete and granite in tension with damage[J]. Theoretical and Applied Fracture Mechanics, 2001, 36: 37-49. doi: 10.1016/S0167-8442(01)00054-4
    [25] 冯峰, 王启智.大理岩Ⅰ-Ⅱ复合型动态断裂的实验研究[J].岩石力学与工程学报, 2009, 28(8): 1579-1586. doi: 10.3321/j.issn:1000-6915.2009.08.008

    Feng Feng, Wang Qi-zhi. An experimental study of mixed mode Ⅰ-Ⅱ dynamic fracture of marble[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(8): 1579-1586. doi: 10.3321/j.issn:1000-6915.2009.08.008
    [26] 刘再华, 解德, 王元汉, 等.工程断裂动力学[M].武汉: 华中理工大学出版社, 1996: 38-41.
    [27] Ravi-Chandar K. Dynamic Fracture[M]. Elsevier, 2004: 49-69.
    [28] Chen Y M, Wilkins M L. Numerical analysis of dynamic crack problem[J]. Engineering Fracture Mechanics, 1975, 7: 635-660.
    [29] 李旭东, 张鹭, 马渊, 等.基于有限单元法对动态应力强度因子进行数值计算的研究[J].振动与冲击, 2011, 30(1): 223-226. doi: 10.3969/j.issn.1000-3835.2011.01.049

    Li Xu-dong, Zhang Lu, Ma Yuan, et al. Numerical calculation of dynamic stress intensity factor based on finite element method[J]. Journal of Vibration and Shock, 2011, 30(1): 223-226. doi: 10.3969/j.issn.1000-3835.2011.01.049
    [30] Leyden: Noordhoff International Publishing, 1977: 1-58.
    [31] Zhang Z X, Kou S Q, Yu J, et al. Effect of loading rate on rock fracture[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36: 597-611. doi: 10.1016/S0148-9062(99)00031-5
    [32] Rosakis A J. Explosion at the Parthenon: Can we pick up the pieces?[R]. GALCIT SM report 99-3, 1999.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  3353
  • HTML全文浏览量:  308
  • PDF下载量:  448
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-22
  • 刊出日期:  2014-05-25

目录

    /

    返回文章
    返回